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Preface

The third Summer Program of the Center for Turbulence Research was held dur-

ing the four week period July 16 to August 10, 1990. As in the past Summer pro-
grams, direct numerical simulation databases were used to study turbulence physics

and modeling issues. Twenty seven participants from seven countries were selected
based on their research proposals. They joined twenty eight local participants from
Stanford and NASA-Ames Research Center who devoted virtually all their time

during the Program to this activity. Noteworthy features of this Summer Program
were a special emphasis on subgrid scale modeling for large eddy simulations and

a relatively large effort devoted to turbulent reacting flows and combustion. The

remaining projects were rather independent, but some unplanned collaborative ef-
forts developed among the participants in different groups during the course of the

Program.
The databases consisted of a turbulent mixing layer (past the mixing transition),

turbulent and transitional channel flow with passive scalar, 3-D boundary layer

and channel flow, homogeneous shear flow, compressible homogeneous turbulence,

compressible free-shear flows, and reacting flows. In a few cases, the need for
additional data arose which led to additional direct simulations; in some instances,

however, time did not permit obtaining sufficient integration times to accumulate

high quality statistical samples.

As part of the program five review tutorials were given on wall turbulence and the
Kolmogorov region (A. Perry), combustion modeling (C. Donaldson), compressible

turbulence and shocks (S. Lee), small scale in turbulent mizing layers (M. Rogers),

and renormalization group analysis of turbulence (L. Smith).

This report contains twenty five papers that resulted from the 1990 Summer

Program. The papers are divided into six groups and are preceded by an overview
written by each group coordinator. This report provides an account of a short

term, but intensive, study of the physics and models of turbulent flows. Therefore,
the results should be considered as preliminary. It is hoped that the studies that

began during the Program will be continued and in due course the results will be

presented in the archival literature. Early reporting of some of the projects occurred

at the Forty-Third Meeting of the Fluid Dynamics Division of the American Physical
Society in Ithaca, New York, November 18-20, 1990. Fifteen abstracts based on the

work accomplished during the Summer Program were presented at this meeting.
Thanks are due to Ms. Debra Spinks for the compilation of this report and her

invaluable assistance in the organization of the Summer Program.

Parviz Moin

William C. Reynolds
John Kim
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I. The subgrid scale modeling group

Subgrid-scale models are used in large-eddy simulation of turbulent flows, where

the large-scale field is computed directly via the filtered Navier-Stokes equations and

the small scale-field is modeled. The subgrid-scale model then represents the effects

of the small scales on the large-scale motions. Relatively little effort has been de-

voted to subgrid scale modeling, despite its purported importance as an alternative

to single-point closures for solving engineering problems. The Smagorinsky (1963)

model remains as the most widely used model for large-eddy simulations. Several

modifications to this model have been proposed to account for mean-flow complex-

ities, but they are generally based on ad hoc foundations. Improvements have also

been sought in analogy with single-point closure models by using moment equations

for the subgrid-scale stresses (Deardorff, 1973, J. Fluids Eng. gs; Schumann, 1975,

J. Comp. Phys. 18).

The key element that has been missing in most subgrid scale modeling efforts

has been the effective utilization of the large-scale field which is computed directly.

This rather rich spectral information is not available in methods based on Reynolds-

averaged equations and should be brought to bear in large eddy simulations. The

model of Bardina et al. (1980, AIAA 80-1357) is a rare example where an attempt

is made to extrapolate from the computed large-scale field to model the small scales;

however, this model still relies on a supplementary Smagorinsky model to provide

the necessary subgrid-scale dissipation. Several improved subgrid-scale models have

been developed in Fourier space based on statistical theories of homogeneous tur-

bulence. Although they are appealing because of their more rigorous theoretical

foundations, they are of little use for inhomogeneous flows, where the problems are

formulated in physical space, and where accurate subgrid-scale models are really

needed.

The problems with the Smagorinsky model (or its variants) are: 1) The optimal

model constant must be changed in different flows; 2) the model does not have

the correct limiting behavior near the wall; 3) the model does not vanish in laminar

flow, and it is demonstrated to be too dissipative in the laminar/turbulent transition

region; 4) the model does not account for backscatter of energy from small scales

to large scales, which has been shown to be of importance in the transition regime;

and 5) compressibility effects are not included in the model. The objective of the

subgrid-scale modeling group was to address these issues.

The group concentrated on four projects: Three were devoted to the development,

implementation, and testing of subgrid-scale models, and one was an attempt to

quantify the subgrid-scale backscatter using direct numerical simulation databases.

Germano, PiomeUi, Moin & Cabot used the scale-similarity ideas of Bardina et

al. and Germano (1990, CTR Manuscript 116) to derive an eddy viscosity model.

The model uses the strain fields at two different scales and thus utilizes spectral

information in the large-scale field to extrapolate the small-scale stresses. Using an

algebraic identity derived by Germano (1990), and using the Smagorinsky model to

PRF..CED_[",:G PAGE. BLAL'_K NOT FILMED
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represent the subgrid-scale stresses at both scales, an expression for the Smagorinsky

"constant" is derived which is a function of space and time. The constant can be

negative in some regions and thus does not totally exclude backscatter, it provides

for the proper asymptotic behavior of the stresses near the wall without ad hoc
damping functions, and it vanishes in laminar flow without ad hoc intermittency

functions. Large-eddy simulations of the transitional and turbulent channel flows

using this model performed during the Summer Program were very encouraging.

Essentially, the agreements with the direct simulation results were as good or better

than those obtained with variants of the Smagorinsky model but without the fine-

tuning and the ad hoe components that such models have required. I believe that

this model represents a major advance in subgrid-scaie modeling and should be
tested in more complex turbulent flows.

Eddy viscosity models are absolutely dissipative; that is, energy is transferred

from large scales to the small scales. Although this is the correct behavior in the

mean, it is not necessarily true instantaneously and at each point in space. In fact,
recent computations by PiomeUi et al. (1990, Phys. Fluid_ A, 2) have indicated

that backscatter may be dynamically critical in the transition region. Piomelli,

Cabot, Moin & Lee investigated the scope of backscatter using direct numerical

simulation databases of turbulent and transitional channel flow and compressible
isotropic turbulence at different Reynolds numbers and Mach numbers. It was very

surprising to find that at any instant about 50% of the grid points were in the state

of energy transfer from small to large scales when sharp cut-off filters were used.

Although the mean transfer is from large to small scales, it results from the smail

difference between large forward and backward components.
Comte, Lee & Cabot tested and modified the structure-function-based model of

M_tais & Lesieur (1990, preprint). The m_in appeal of the model is its rigorous

roots in wave space. The model is formulated in physical space, however, and is

directly applicable to inhomogeneous flows. It was tested using the database from

direct numerical simulation of channel flow. Its asymptotic behavior near the wall
was not correct and modifications were implemented to improve it. This model was

also incorporated in a large-eddy simulation of compressible isotropic decay, and,

as expected, its performance was satisfactory.

Squires & Zeman developed an eddy viscosity model for compressible flows. The

model is essentially a modification of the Smagorinsky model with a parameteri-

zation of turbulence kinetic energy that must now be accounted for separately. In

the limit of incompressible flow, the Smagorinsky model is recovered. They also

obtained an expression for the eddy diffusivity ten, or. The stress-similarity ideas

of Germano et al. can be applied in a straightforward manner to this model for
dynamic computation of the space- and time-dependent model coefficient. This ex-

tension to the model of Squires & Zeman should provide an attractive subgrid-scale

model for compressible flows. Other improvements would be to account for the

effects of eddy shocklets. Some ideas in this direction are presented by Squires &

Zeman, but they have not been tested.
Parviz Moin
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A dynamic subgrid-scale eddy viscosity model

By Massimo Germano, 1 Ugo Piomelli, 2

Parviz Moin 3 AND William H. Cabot s

One major drawback of the eddy viscosity subgrld-scale stress models used in

laxge-eddy simulations is their inability to represent correctly with a single univer-
sal constant different turbulent fields in rotating or sheared flows, near solid walls,

or in transitional regimes. In the present work a new eddy viscosity model is pre-
sented which alleviates many of these drawbacks. The model coefficient is computed

dynamically as the calculation progresses rather than input a priori. The model is
based on an algebraic identity (Germano 1990) between the subgrid-scale stresses
at two different filtered levels and the resolved turbulent stresses. The subgrid-scale

stresses obtained using the proposed model vanish in laminar flow and at a solid

boundary, and have the correct asymptotic behavior in the near-waU region of a

turbulent boundary layer. The results of large-eddy simulations of transitional and
turbulent channel flow that use the proposed model are in good agreement with the

direct simulation data.

1. Introduction

In large-eddy simulations (LES) the effect of the large scales is directly computed,
and only the small subgrid scales are modeled. Since small scales tend to be more

isotropic than the large ones, it should be possible to parameterize them using

simpler and more universal models than standard Reynolds stress models. Thus,

most subgrid-scale (SGS) stress models axe based on an eddy viscosity assumption.
In the most commonly used model, due to Smagorinsky (1963), the eddy viscosity

vT is obtained by assuming that the small scales are in equilibrium, so that energy

production and dissipation axe in balance. This yields an expression of the form

,,r = (Cs ) =ISl, (1)

where A is the filter width (which, unless otherwise noted, is assumed to be equal to

the grid size), Cs is the Smagorinsky constant, ISI = (2SijSij) 1/_ is the magnitude

of laxge-scale strain rate tensor

= + ' (2)

1 Politecnico di Torino, Italy

2 University of Maxyland

3 Center for Turbulence Research
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and _i is the large-scale velocity.

Lilly (1966) determined that, for homogeneous isotropic turbulence with cutoff

in the inertial subrange, Cs _- 0.17. In the presence of mean shear, however,

this value was found to cause excessive damping of large-scale fluctuations, and

in his simulation of turbulent channel flow, Deardorff (1971) used Cs = 0.094. A

priori tests by McMillan, Ferziger & Rogallo (1980) on homogeneous turbulence

confirmed that Cs decreases with increasing strain rate. Mason & Callen (1986),

however, found that the value Cs = 0.2 gave good results if the grid resolution was

sufficiently fine, and concluded that values of Cs lower than 0.2 are required if the

numerical resolution is insufficient. Their results, however, were not confirmed by

Piomelli, Moin & Ferziger (1988), who found the optimum value of Cs to be around

0.1 even with meshes much finer than those used by Mason & Callen (1986).

Additional modifications to the Smagorinsky model were made in the near-wall

region of plane channels to force the subgrid-scale stresses to vanish at the solid

boundary. Moin & Kim (1982), for example, used damping functions to account for

near-wall effects. Piomelli et al. (1988) chose the damping function to ensure the

proper asymptotic behavior for the SGS shear stresses near the wall, but found little

difference with the results obtained with the standard Van Driest (1956) damping

used by Moin & Kim (1982) and others.

Yakhot et al. (1989) used a subgrid-scale model based on the Renormalization

Group theory of Yakhot & Orszag (1986) in the large-eddy simulation of channel

flow. Although the stresses predicted by the model in its original formulation go to

zero without requiring any damping function, Yakhot et al. (1989) included an ad

hoc factor to take into account the anisotropy of the small-scales in the near-wall

region. The asymptotic behavior of the stresses predicted by this model depends

on the grid distribution in the wall-normal direction; for the grids commonly used,

an incorrect asymptotic behavior is obtained.

Large-eddy simulations of transition in boundary layers (Piomelli et al. 1990a)

and plane channel (Piomelli & gang 1990b) show that during the early stages of

transition the Smagorinsky model predicts excessive damping of the resolved struc-

tures, leading to incorrect growth rates of the initial perturbations. To overcome

this difficulty they introduced additional empiricism in the form of an intermittency

function which modified the Smagorinsky constant by effectively setting it to zero

during the linear and early nonlinear stages of transition.

This brief survey of the existing literature indicates that, although modifications

of the Smagorinsky model have been successfully applied to the LES of transitional

and turbulent flows, it is not possible to model effectively with a single, universal

constant the variety of phenomena present in the flows examined. The ad hoc

manner in which the SGS eddy viscosity has been extrapolated to the wall is far

from desirable. In addition the Smagorinsky model cannot account for energy flow

from small scales to large scales (backscatter), which can be significant (Piomelli et

al. 1990c).

In this work a new, dynamic SGS stress model is proposed that attempts to

overcome these deficiencies by locally calculating the eddy viscosity coefficient to
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reflect closely the state of the flow. This is done by sampling the smallest resolved

scales and using this information to mode] the subgrid scales. The model presented

here requires a singJe input parameter and exhibits the proper asymptotic behavior
near solid boundaries or in laminar flow without requiring damping or intermittency

functions. The model is also capable of accounting for backseatter.

In the next Section, the model will be presented and its characteristics discussed.
The model was tested both a priori, taking advantage of existing direct numerical

simulation (DNS) databases, and a posteriori using the model in an LES calculation.
The results of these tests will be discussed in Section 3. Concluding remarks will

be made in Section 4.

2. Mathematical formulation

In large-eddy simulation, the large scale quantities are defined by the convolution
of the velocity and pressure fields with a filter function. For the_ purposes of this
work we define two filtering operators: one is the grid filter, G, denoted by an

overbar:

](x) ----/ f(x')G(x, x')dx', (3)

while the other, the test filter, G, is denoted by a tilde:

_'(_) = f f(_')_(_,_')d_'; (4)

finally, let G = GG.

By applying the grid filter

equations one obtains the filtered equations of motions

_ _0,

0zi

0-7+ _ (_,_s) = a,, o,s +

to the dimensionless continuity and Navier-Stokes

1 02_i

Re OzsOz s"

(5)

(6)

In the foUowing, z or zl is the streamwise direction, 9 or z2 the wall-normal direction

and z or zs is the spanwise direction. The effects of the small scales appear in the

subgrid-scale stress term
riS = ui--_j - uiuS, (7)

which must be modeled.

Consider now the subgrid-scale stress obtained by applying the test filter to the

filtered equations of motion (5) and (6)

TIS = ui"_j - uiuj, (8)

and the resolved turbulent stress/:iS defined as

£_s= _'-_J- _J- (9)
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The resolved turbulent stresses are representative of the contribution to the
Reynolds stresses by the scales whose length is intermediate between the grid filter

width and the test filter width, i.e. the small resolved scales. It is easy to see that

these quantities are related by the algebraic relation (Germano 1990)

r. j = Tii - (10)

which relates the resolved turbulent stress £ij, which can be calculated explicitly,

to the subgrid-scale stresses at the test and grid levels, Tij and _'ij.
The identity (10) can be exploited to derive more accurate SGS stress models by

determining, for example, the value of the Smagorinsky coefficient most appropriate
to the instantaneous state of the flow. Assuming that the same functional form can

be used to parameterize both Tij and _ij (the Smagorinsky model, for example), let
Mij and m_j be the models for the anisotropic parts of the T_j and _'/j:

where

Tij - _rkk '_ mij = -2C_2ISISij, (11)

Tij - Tkl, '2_Mij = -2CA ISlS, , 02)

1 (O_i Ouj_ V/2_m_,,t_, (13)

A is the characteristic filter width associated with G, and A is filter width associated

with G. Substitution of (11) and (12) into (10) and contracting with Sij (or Sij)

_ves

_ (-,--g js,u = -20 ISlSj, u- a21 u ,j , (14)

from which C(z,y,z,t) can, apparently, be easily obtained. The quantity in
parentheses, however, can become zero which would make C indeterminate or ill-

conditioned. A priori tests in turbulent channel flow have shown this to be indeed
the case. For the channel flow, therefore, it was assumed that C is only a function

of y and t. To this end, the average of both sides of (14) is taken over a plane

parMlel to the wall (indicated by <.>) to yield

1 < £hzS_ >
= - _, - ~ _ , (15)

C(V, t) 2 _ < [S[S,n,,S,nn > __-2 <[S[SnqSpq >

the new dynamic eddy viscosity subgrid-scale stress model is then given by

< £_tSs: >
tniJ = /_ \ 2 -- --

\1

lSl&j. (16)
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In more general situations, the plane average should be replaced with appropriate

local space and time averages.
A few remarks are in order regarding the properties and the character of the

subgrid-scale stress model given by (16). First, the model gives zero SGS stress

everywhere £O vanishes (as long as the denominator remains finite). Such is the
case in laminar flow or at solid boundaries. Furthermore, it is easy to show that in

the near-wall region m O is proportional to the cube of the distance from the wall yv,,

regardless of the choice of A or A. This is the correct asymptotic behavior for the

(1,2) component of the subgrid-scale stress tensor, which, in this region, is the most

significant one. To the authors' knowledge, this is the only model which satisfies

this property without the use of ad hoc damping functions. Finally, the use of (16)

implies that the modeled subgrid-scale dissipation, eo0o = mij-Sij,_is proportional

to the average dissipation of the resolved turbulent stresses, <£0S0>, which can

be either positive or negative. Thus, the model does not rule out backscatter. In

the present formulation backscatter is not localized, and may (or may not) occur

at every point in a plane; the use of local averaging in (14), however, would allow

the model to provide localized backscatter as well.

The only adjustable parameter in the model is the ratio a = _/A > 1. The

resolved turbulent stresses calculated using small values of a can be contaminated

by numerical errors; on the other hand, large vaJues of a imply that the stresses

due to large energy carrying structures are used to determine the contribution of

the subgrid scales. If the optimal value of a varies greatly from one flow to another,

the applicability of the model is reduced. In the next Section, the optimal value of

obtained from a turbulent channel flow database will be used for the large-eddy

simulation of transitional and turbulent channel flow at higher Reynolds numbers

to address this issue. Finally, the model (16) implicitly assumes similarity between

the SGS stresses at the grid and test levels, which are modeled using the same

functional expression, namely, the Smagorinsky model

3. Results and discussion

A priori tests of the dynamic subgrid-scale stress model (16) were carried out to
determine the best choice for a and the accuracy with which the model predicts the

SGS stresses and dissipation. The tests were performed using the DNS database of

Kim, Moin &_ Moser (1987) for turbulent channel flow, and that of Zang, Gilbert &

Kleiser (1990) for transitional flow. Reynolds numbers are respectively Re = 3300

(based on the centerline velocity Uc and channel halfwidth /_) for the turbulent

case, and Re = 8000 for the transitional case (based on initial centerline velocity

and channel halfwidth).

The first task accomplished by these tests was to determine the optimal value

of the ratio a. The sharp cutoff filter was applied as both grid and test filter in

the streamwise and spanwise directions. No explicit filtering was applied in the

wall-normal direction. The length scales were defined as

_3

_-s = A1A2As ' _" = AIA2As, (17)
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FIGURE 1. Plane-averaged subgrid-scale shear stress <_'>m and dissipation <e,o, >;
Re = 3300 turbulent channel flow. -, exact; -- c== 2; .... _z= 4/3; ........ c_=
8/?. (a) Dissipation; (b) SGS shear stress.

where A i and Ai are the filter widths in each coordinate direction associated with

G and G respectively.

The mean subgrid-scale shear stress <_'>m and dissipation <e°_, > are compared
with the modeled ones in Figure 1 for various filter widths in the turbulent channel

flow case. The choice a = 2 was found to yield the best results. With this choice A

corresponds to a wavenumber in the decaying region of the one-dimensional energy

spectrum, while A represents a wavenumber in the flat region. In Figure 2, C is

plotted as function of the wall coordinate y+ = u,.y_/v [where u,. = (r_,/p) 1/2 is

the friction velocity, r_ is the wall shear and p the fluid density] ; the expected

y+3 behavior is evident. At the channel center C -_ 2.5 x 10-3; the square root

of this value is about half the commonly used value for the Smagorinsky constant,

Cs = 0.1. The model was also tested in transitional flow, where the choice a -- 2

appeared to be the best, at least for the prediction of the subgrid-scale dissipation
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FIGURE 2. Variation of C [defined in Eqn. (16)] with distance from the wall; Re =

3300 turbulent channel flow, _ = 2. _ C obtained from DNS (Kim et al. 1987);
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FIGURE 4. Time development of the plane-averaged wall shear stress <r_, > in Re =

8000 transitional channel flow. " DNS (Zang et al. 1990); _ present results;

........ LES (Piomelli & Zang 1990b).
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FIGURE 5. Turbulence intensities <u_'_>z/= in transitional channel flow. A Filtered

DNS (Zang et al. 1990); -- present calculation; ........ LES results of Piomelli &

Zang (1990b). (a) t = 176; (b) t = 200; (c) t = 220.

(Figure 3). The SGS dissipation predicted by the Smagorinsky model, by contrast,

is many orders of magnitude larger, and peaks much closer to the wall than the

exact one (Piomelli et al. 1990a).

To further determine the accuracy of the dynamic SGS model (16), it was also

tested a posteriori in the LES of transitional and fully developed turbulent chan-

nel flow. Initial conditions consisted of the parabolic mean flow, on which a 2D

Tollmien-Schlichting (TS) mode of 2?% amplitude and a 3D TS mode of 0.02?% am-

plitude were superimposed. The initial conditions and Reynolds number matched

those of the direct simulation of Zang, Gilbert & Kleiser (1990). The governing equa-

tions (5) and (6) were integrated in time using a pseudo-spectral Fourier-Chebyshev
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collocation method (Zang & Hussaini 1987). The ratio cx = 2 was chosen. At the

initial stages 8 x 49 x 8 grid points were used; the mesh was then progressively refined

up to 48x65x64 points; the dimensions of the computational domain were 27r6 in
the streamwise direction, and 41r_/3 in the spanwise direction. Periodic boundary

conditions were applied in the streamwise and spanwise directions; no-slip condi-

tions were applied at the walls.

The time development of the mean wall shear stress <r_> is compared in Fig-

ure 4 with the DNS results of Zang, Gilbert & Kleiser (1990) and with the results

of the LES of Piomelli & Zang (1990b), which used a Smagorinsky model including
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Van Driest damping and an ad hoc intermittency function; the present results com-

pare very well with the finely resolved DNS. A coarse direct simulation which can

adequately resolve the early stages of transition (up to t __ 170) cannot predict the

drag crisis and the breakdown process with any accuracy (Piomelll & Zang 1990b).
II

The root-mean-square fluctuation of <u"2> 1/2 (where u_ = _ - <_i>) and the

Reynolds shear stress <u"V'>, shown in Figures 5 and 6, are in fair agreement with

the DNS results. The DNS results have been filtered using the same filter employed

in the LES calculation. Discrepancies between the LES and DNS results at late

stages of transition may be due to the fact that, at these times, slight differences in

the prediction of the onset of transition may result in significant differences in the

instantaneous fields. The capability of the model to predict average backscatter is

evidenced by the fact that for t _< 185 the eddy viscosity was negative for significant

regions of the channel.

Once fully developed turbulent flow was achieved, statistics were accumulated.
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The Reynolds number of the turbulent flow was Re,. = 295 based on friction ve-

locity u, and channel halfwidth. The mean velocity profile is shown in Figure 7,

normalized by the friction velocity u,. and by the bulk velocity Us

<_>d_. 08)

Although an inadequate resolution of the wall layer results in a low value of wall

stress, which is reflected in a high value of the intercept of the logarithmic layer

in Figure 7b, agreement of the LES results with the DNS data is fairly good. The

turbulence intensities <u_2> I/2 normalized by the friction velocity it, are shown

in Figure 8. The DNS results have been filtered using the same filter employed in

the LES calculation. In general, the dynamic model gives more accurate results

than the Smagorinsky model used by Piomelli & Zang (1990b). The peak of the
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streamwise turbulent kinetic energy occurs near y+ -- 12, a value also obtained by

experiments and numerical simulations; the mean streak spacing was found to be

A + = 140, somewhat larger than the established value of 100, which is also expected

of large-eddy simulations.

4. Concluding remarks

A new eddy viscosity subgrid-scale stress model has been presented in which

the smallest resolved scales are dynamically tested to predict the behavior of the

subgrid scales. This model is based on the algebraic identity (10) between the

resolved turbulent stresses and the subgrid-scale stresses obtained using two filters,

the grid filter and the test filter. The model coefficient was obtained dynamically

as the calculations progress. This procedure exploits the spectral information on

the energy content of the smallest resolved scales provided by LES calculations to

dynamically adjust the model. The only input to the model is the ratio of test filter

width to grid filter width, which was optimized using a numerical turbulent channel

flow database. Among the useful properties of the model is its proper asymptotic

behavior near the wall without the use of ad hoc damping functions.

Large-eddy simulations of transitional and fully developed turbulent channel flow

were also carried out. The results were in good agreement with those of direct

simulations, and better than those of LES that used the Smagorinsky model with

ad hoe. damping and intermittency functions.

Investigation of the properties of this model when the box filter is employed is

desirable. The robustness of the choice c_ : 2 should also be examined by applying

the model to flow configurations much different from those studied here. Finally,

the use of local space and time averages instead of the plane average used to obtain

(16) should be attempted.
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Subgrid-scale backscatter in
transitional and turbulent flows

By Ugo Piomelli, 1 William H. Cabot, 2 Parvis Moin 2 AND Sangsan Lee 2

Most subgrid-scale (SGS) models for large-eddy simulations are absolutely dissi-

pative (that is, they remove energy from the large scales at each point in the physical

space). The actual SGS stresses, however, may transfer energy to the large scales

(backscatter) at a given location. Direct numerical simulations of turbulent channel

flow and compressible isotropic turbulence are used to study the backscatter phe-

nomena. In all flows considered roughly 50% of the grid points were experiencing

backscatter when a Fourier cutoff filter was used. The backscatter fraction was

less with a Gaussian filter, and intermediate with a box filter in physical space.

Moreover, the backscatter and forward scatter contributions to the SGS dissipation

were comparable, and each was often much larger than the total SGS dissipation.

The SGS dissipation (normalized by total dissipation) increased with filter width al-

most independently of filter type and Reynolds number. The amount of backscatter

showed an increasing trend with Reynolds numbers. In the near-wall region of the

channel, events characterized by strong Reynolds shear stress correlated fairly well

with areas of high SGS dissipation (both forward and backward). In compressible

isotropic turbulence similar results were obtained, independent of fluctuation Mach

number.

1. Introduction

Large-eddy simulation (LES) is based on the assumption that the modeled small

scales are nearly homogeneous and isotropic. Most of the commonly used subgrid-

scale (SGS) models, moreover, assume that the main function of subgrid scales is

to remove energy from the large scales and dissipate it through the action of the

viscous forces. It has been known for some years, however, that while on average

energy is transferred from the large to the small scales ("forward scatter"), reversed

energy flow ("backscatter") from the small scales to the large ones may also occur

intermittently.

The most commonly used subgrid-scale stress model, the Smagorinsky (1963)

model, is absolutely dissipative, i.e., can only account for forward scatter. This

model has been reasonably successful in simulations of simple turbulent flows; its

success is probably due to its ability to predict the global energy drain by the small

scales even if the details of the model are incorrect (Rogallo 8z Moin 1984).

1 University of Maryland

2 Center for Turbulence Research
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Very few of the SGS models used in the past are capable of providing backscatter.

The mixed model of Bardina, Ferziger & Reynolds (1980), for example, has a part

that is not absolutely dissipative, the scale-similar part; in channel flow this term

provides backscatter (Horinti 1989).

Recent work on the LES of transitional flows (Piomelli et al. 1990) has shown that,
during the early nonlinear stages of transition energy is transferred from small scales

to large scales even in the mean, and that failure to account for this phenomenon

can cause inaccurate prediction of the growth of the perturbations. The Smagorin-

sky model predicted decay of the perturbations even in instances in which the flow
should have been unstable. Acceptable results were obtained, however, by intro-

ducing an intermittency factor which turned off the eddy viscosity model until the

perturbations had grown to finite amplitude and altered the mean velocity profile.

Leith (1990) proposed an SGS stress model including a stochastic backscatter

force that was used for the LES of two-dimensional mixing layer. Although his
results show the correct growth rate of the layer, no comparison is made with
calculations in which the stochastic force is omitted.

Chasnov (1990) presented an SGS stress model which includes a stochastic back-
scatter force. Use of this model in a LES computation of freely-decaying isotropic

turbulence gave results in good agreement with theoretical predictions. By con-

trust, use of an eddy viscosity model did not yield the expected spectral decay in
the inertial subrange.

Although backscatter modeling has recently received some attention, little effort

has been made to actually quantify this phenomenon, especially in wall-bounded
flows. In this study, the velocity fields obtained from direct numerical simtdations

(DNS) of the Navier-Stokes equations will be used to calculate subgrid-scale dis-

sipation and backscatter. Although this work will concentrate on transitional and
turbulent plane channel flows, compressible homogeneous isotropic turbulence has

also been examined. In the next Section the equations relevant to the problem

will be presented; in Section 3 results of a priori tests performed on the numeri-
cal simulations will be shown and discussed. Finally, in Section 4 conclusions and

suggestions for future work will be made.

2. Mathematical formulation

In large-eddy simulation the large-scale quantities (indicated by an overbar) are
defined by the filtering operation

f(x) = f/(x')G(x, x')dx', (1)

in which fit is the filter function and the integral is extended to the entire domain.

Applying the filtering operation to the Navier-Stokes equations yields the dimen-

sionless filtered continuity and Navier-Stokes equations

- 0, (2)
Ozi

0_i 0 0_ 0rlj 1 02_i

O---t+ _ (_i_j) - Ozi Ozj + Re OzjOzj" (3)
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Equations (2-3) govern the evolution of the large scales. The effects of the small

scales appear in the subgrid-scale (SGS) stress

ro = _.u---j- _,_, (4)
which must be modeled.

To examine the effect of the SGS stress model on the resolved scales, consider

the transport equation for the resolved energy _2 = _i_i

Re Ozj ]Oq2 0 0 (-2_ _j - 2¢irij + --

2 O-ai O-_i
-_- 27"ij_ij ,

- -Re Oz_ Oz_

in which S_j is the large scale strain-rate tensor

(5)

(6)

One half of the last term on the right-hand side of (5) will be referred to as "subgrid-

scale dissipation", e0_, = rijSij; it represents the energy transfer between resolved
and subgrid scales. If it is negative, the subgrid scales remove energy from the

resolved ones (forward scatter); if it is positive, they release energy to the resolved

scales (backscatter). The backward and forward scatter components of e,g,, respec-

tively denoted by e+ and e_, are defined as
1 1

,+ = _ (,.. + I,..I), ,- = _ ('.9° - I,..1). (7)
It is easy to see that eddy viscosity SGS stress models of the Smagorinsky type

are absolutely dissipative, since they assume that the eddy viscosity ua, is positive,

which gives
rij-Sij = --2VTSijSij < 0. (8)

To investigate the character of backseatter in turbulent flows the velocity fields
obtained from the direct numerical simulation (DNS) of the Navier-Stokes equations

were filtered to yield the exact resolved and subgrid-scale velocities, and the exact

subgrid-scale dissipation. The filter functions used in this work are the Gaussian
filter, the box filter in physical space and the sharp cutoff filter. The Gaussian filter

is given by

( 6 _ 1/'
Gi(zi,z_)= \-_i] exp [6(zi - x_)'/A_], (9)

the box filter is defined as

' I x/a_ for I'_ - _1 < Ai/2 (10)Gi(zi, zi) = 0 otherwise,

while the cutoff filter is most conveniently defined in Fourier space:

1 for ki_< Ki (11)Gi(ki)= 0 otherwise,

where Gi is the Fourier coefficient of the filter function in the ith direction, Gi,

Ki = lr/Ai is the cutoff wavenumber and Ai is the filter width in the ith direction.
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FIGURE 1. Subgrid-scale dissipation normalized by <e_>v; Re = 3300 turbulent

channel flow; cutoff filter. -- Plane-averaged dissipation <e,g,>; .... r.m.s.

fluctuation of ca0=; ........ plane-averaged backscatter <e+>. (a) A_ = 4Azi, a =

0.10; (b) Ai = 8Azi/3, a = 0.04; (c) Ai = 2Azi, ot = 0.02.

3. Results and discussion

The direct simulation results used for the study of backscatter in channel flows

were those of Kim, Moin & Moser (1987) for turbulent channel flow, and those of

Zang, Gilbert g_ Kleiser (1990) for the transitional channel flow case. In al] cases z

or zl is the streamwise direction, y or z2 the direction normal to the walls, which are

located at y = -t-1, and z or zs is the spanwise direction; u, v and w are the velocity

components along the coordinate directions. Reynolds numbers are respectively

Re = 3300 and 7900 (based on centerline velocity Uc and channel halfwidth) for the

turbulent cases and Re = 8000 for the transitional case (based on initial centerline

velocity and channel halfwidth).

In Figure 1 the plane-averaged and root-mean-square subgrid-scale dissipation are

shown for the Re = 3300 case. In the following, <.> indicates averaging over a plane

parallel to the wall, while <.>v indicates averaging over the entire computational
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domain. The SGS dissipation and backscatter will be normalized by either the

volume- or plane-averaged abJolute value of the viscous dissipation, defined as

2

E,, = -R-_eSijSij, (12)

where

S,j = _ \O=j + 0=, )"
(13)

The amount of filtering will be characterized by a, the ratio of subgrid-scede kinetic

energy <q_s°>v to toted turbulent kinetic energy <q2> V. Since filtering was only
applied in the plane parallel to the wall, the ratios of filter width Ai to grid size

Azi reported here only refer to the streamwise and spanwise directions.

Figure 1 indicates that the backscatter contribution to e0g0 is much larger than

the mean for all filter widths examined. While the subgrid scales extract energy

from the large scedes in the mean, large values of e+ and e_ can be expected. The

fraction of points in each plane which experience backscatter (shown in Figure 2)

is close to 50% almost independent of filter width and distance from the wall. This
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result was found to hold for all flows examined, including the transitional channel

flow and the compressible isotropic decay.

Both backward and forward scatter peak in the near-wall region, at approximately

y+ = 12 (variables indicated by a superscript + are normalized by the kinematic

viscosity v and the friction velocity u_). In the near-wall region of the channel,

events characterized by strong Reynolds shear stress correlate fairly well with areas

of high SGS dissipation (both forward and backward). The unconditioned corre-

lation coefficient between e,e0 and uv is only 0.28 at y+ = 7, but decays to zero

above y + = 15. This value increases to 0.45 at y+ = 7 if the correlation coefficient

is conditioned on the value of uv being larger than its rms. The subgrid-scale dis-

sipation normalized by the plane-averaged viscous dissipation (Figure 3) increases
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monotonically with distance from the wall and levels off at midchannel (see below).

Similar results were obtained from the Re = 7900 channel flow (Figure 4) and

from the transitional cases examined (Figure 5). At the early stages of transition

(for t < 180), however, backscatter was found to occur in the mean (PiomeUi et al.

1990).

When the Ganssian filter was used the magnitude of e+ was very much reduced

over that found using the cutoff filter (Figure 6), although backscatter still occured

at approximately 30% of the grid points. In practice, the Gaussian filter is usually

coupled with a sharp cutoff filter, so that the subgrid-scale velocity has a contribu-

tion from the small scales (those beyond the cutoff) and from the scales resolved on

the grid. The subgrid-scale dissipation, therefore, accounts for part of the energy

transferred between scales above the cutoff, and a portion of the energy transferred

between scales above the cutoff and those below it (the interaction indicated by the

dark arrows in Figure 7). Another portion of the energy transferred by this interac-

tion between large scale and small scales (indicated by the lighter arrow), however,

appears as an energy transfer between subgrid scales in the transport equation for

q_g, with the Gaussian filter, while it contributes to backscatter with the cutoff
filter.

When the box filter is used the SGS dissipation and backscatter are intermediate

between those obtained with the Gaussian and the cutoff filters (Figure 8). This

reflects the character of the box filter, which separates large and small scales more

precisely than the Gaussian, but not as clearly as the cutoff filter.

The volume-averaged subgrid-scale dissipation and fraction of backscatter points

for the turbulent channel flows examined are shown in Figure 9. The SGS dissipation

(normalized by total dissipation) increased with filter width almost independently

of filter type and Reynolds number. The amount of backscatter (Figure 10) appears

to slightly increase with Reynolds number, a trend confirmed by the finding that

<e+>/<ev> also increases with distance from the wall (see Figure 3).

The results obtained from the compressible isotropic decay simulations exhibit the
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Reo = 35.1 for all cases, uRe = 22.5, M = 0.132, Mo = 0.173; o Re = 19.8,

M : 0.113, Mo = 0.173; • Re = 19.4, M : 0.220, Mo = 0.346; • Re = 17.3,

M = 0.182, Mo : 0.346; + Re : 18.0, M = 0.289, Mo = 0.519; x Re : 15.0,

M = 0.213, Mo : 0.519.

same trends observed above. The direct simulation data were taken from the results

of Lee, Lele & Moin (1990). For the compressible flow simulations the subgrid-scale

stresses I"i6 and dissipation e,g,, and the viscous dissipation e_ are defined as

rij = _ (u_-/_j - _i_j), (14)

= (15)

(ze)

where the tilde denotes Favre-filtering, and _i is the ith component of the vorticity

vector _i = eijkOuk/Ozj (in which eijk is the alternating tensor). The restdts from
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three simulations were examined with initial turbulent Mach numbers Mo = 0.173,

0.346 and 0.519, respectively (based on rms velocity and mean speed of sound). The

initial Reynolds number Reo for the three cases (based on Taylor microscale and

rms velocity) was 35.1. Various stages of the decay were examined, and the volume-

averaged fraction of backscatter points, subgrld-scale dissipation and backseatter are

shown in Figure 11. The magnitude of the subgrid-seale dissipation increases with

filter width; within the range of filter widths examined, the subgrid-scale backscatter

also increases with filter width, a result consistent with the turbulent channel flow.

No dependence on the Mach number was observed.

4. Concluding remarks

A numerical investigation of subgrid-scale backscatter has been conducted to

determine the extent and magnitude of the energy transfer from small to large

scales. It has been found that, when a cutoff filter is used, backscatter occurs at

nearly half of the points in the flow. The mean subgrid-scale dissipation, which is

usually negative, is the sum of two large quantities: energy transfer from large to
small scales and backscatter. Each of these events is many times the mean SGS

dissipation. Strong backward and forward scatter events are fairly well correlated

with regions of high Reynolds stress, at least in the near-wall region.
When the Gaussian filter is used the amount of backscatter decreases, since part of

the energy transfer between large and small scales is accounted for as an interaction

between subgrid scales. The results obtained with the box filter in real space,

which is implicitly applied by finite difference schemes, are intermediate between

those obtained with the cutoff and Gaussian filters.

While the magnitude of the SGS dissipation (normalized by the volume-averaged

viscous dissipation) increases with filter width independently of Reynolds number

and filter type, backscatter increases slightly with Reynolds number. Similar results

were observed in compressible isotropic turbulence.
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A subgrid-scale model based on the
second-order velocity structure function

By P. Comte I, S. Lee 2 AND W. H. Cabot s

A series of tests were performed to help extend the use of a subgrid-scale model

to compressible and wall-bounded flows. A priori tests were done in the case of the

incompressible turbulent channel flow. They showed that a one-dimensional formu-
lation of the structure-function model is more appropriate, leading to a satisfactory

behavior of the model at the walls without requiting any damping function. This

model is consistent with the original formulation of M_tais &: Lesieur (1990). In

large-eddy simulations of compressible isotropic turbulence, both models performed

well up to an initial rms Mach number of 0.6.

1. Introduction

It is well known that, even with the largest supercomputers available, one cannot

simulate all the scales involved in most flows encountered in nature or in practical

applications. It is often chosen to resolve as accurately as possible the largest scales,
and to model the scales which are smaller than the computational mesh.

In the case of freely decaying incompressible isotropic turbulence, ChoUet &

Lesieur (1981) have developed a subgrid-scale model based on the concept of spec-

tral eddy viscosity introduced by Kraichnan (1976). The normalized eddy viscosity

vt(t) is given in terms of the kinetic energy spectrum at the cutoff wavenumber kc:

,/E(ko,t)

vt(klk"'t) = v+(klk') V _ . (1)

The dimensionless eddy viscosity v + is evaluated assuming that kc lies in the Kol-

mogorov subrange. This formulation ensures that vt remains equal to zero as long

as there is no energy at the cutoff. In the limit of infinite Reynolds number, the

energy balance for the resolved scales is

fo k° E(k,t) = (t).2 vt k 2 dk

For the Kolmogorov spectrum

E(k,t) = Ck e 2Is k -5Is , Ck _ 1.4,

(2)

(3)

1 Grenoble Institute of Mechanics, Grenoble, France

2 Stanford University

3 Center for Turbulence Research
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this yields

vt(t) kc =- V+ = g C;3/' "_ 0.402, (4 /

assuming that vt depends only on time.

In fact, Chollet &_ Lesieur (1981) proposed a more complicated expression for

v + which involved the ratio k/kc, but the expression proposed in (4), justified

by Leslie & Quarini (1979), proved to give acceptable results (M_tais & Lesieur

1990). Chollet (1984, 1985) also applied the same methodology to parametrize the

passive-temperature-variance transfer across the cutoff, and proposed a spectral

eddy diffusivity nt proportional to the eddy viscosity vt, with a constant turbulent

Prandtl number Prt = vt/nt ,_ 0.6. The Chollet-Lesieur model has also been used

in the case of non-isotropic flows, such as stably stratified homogeneous turbulence

(M_tais &_ Chollet 1989; M_tais & Lesieur 1990) and the mixing layer (Comte et

al., 1989). In the latter case, after the first pairing, the model has permitted to
reach a regime of fully developed turbulence with k -s/a spectrum in the smallest

resolved scales and with velocity fluctuation profiles in very good agreement with

their experimental counterparts. Furthermore, the simulations reproduced the fine

details of the turbulence structures, including the streamwise secondary vortices.

M_tais & Lesieur (1990) then proposed another model which computes a time-

dependent eddy viscosity and eddy diffusivity in the physical space at each point,
and which is consistent with the Chollet-Lesieur model. This new model is based

on the second-order isotropic velocity structure function

F,(x,,',t) = ([u(x + ,',t)- u(x,t)l'),t,H= , (5)

which is related in the case of the incompressible turbulence to the energy spectrum

by (Batchelor 1953)

/0 [  in ,lF2(r,t) = (F2(x,r,t)) x = 4 E(k,t) 1 kr J dk, (6)

where u,x, r is the velocity vector, the position vector and the separation vector,

respectively; I1.11denotes for the norm of a vector; and r is the distance between

two points. Henceforth, this new model will be referred to as the structure-function
model. It will be described in more detail in Section 2. Low-resolution tests (48 a)

have led to more accurate predictions than with the ChoUet-Lesieur model, which

may be explained by the fact that the structure-function model takes intermittency

into account better by defining vt and nt locally.

The structure-function model proved superior to the Smagorinsky (1963) model

in the case of the flow past a backward-facing step (Silveira et al. 1990). It has also

been utilized by Normand (1990) (see also Normand & Lesieur 1990) to simulate

weakly-compressible isotropic turbulence and compressible boundary layer over a

fiat plate at an external Mach number of 5. The objective of the present work is

to test this model and try to improve upon it in the two cases of incompressible

channel flow and compressible isotropic turbulence at higher Mach number than

before.
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2. Structure-Function Model

A sharp cutoff at kc in the Fourier space corresponds in the physical space to a

filter function G(x) defined by

2 sin(lrzi/Ac) (7)a(_,) =

with

_: = _/_o. (8)

For the Kolmogorov spectrum (3) extending from k = 0 to oo, the associated

structure function F_ yields the original formulation of Kolmogorov's (1941) law

9(3 ) e21sr 2Is e21sr21 sF_(r) = -_ £ Ck _ 4.822 Ck ,
(9)

where we have used the identity

Loo f0 °° 1 19 z -l/s sinz dz = _r(_).z -s/s [z- sin z] dz = ]-_ (lO)

A relationship between E(kc,t) and F_(r,t) is obtained for all r by eliminating

Ck e2Is in (3) and (9). Hence, (4) yields

2 C;s/, (r ,_-l/s

_o.o398 t_/ A< _/FI (,,0
(11)

The M_tais-Lesieur model is obtained by assuming

F¢(,.,t) = _(,.,t) + Co(,',t), (12)

where _ is the structure function computed from the resolved-velocity field _(x, t),

and Co is defined by

Co(r,t) ==-4 E(k,t) 1 -_r dk (13)

for a Kolmogorov spectrum extending from kc to oo. The validity of this assumption

has been checked by MStais & Lesieur (1990) and proved to be valid provided r is
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not too far from the cutoff scale A¢ = _r/kc (see their Figure 20).

(9), the spectrum E(k, t) arising in (13) is related to F_(r, t) by

1 F_(r) r -2Is k -s13.

This yields

with

Using (3) and

(14)

co= H r , (15)

4 [_zr_,/s_F¢,/S_m{eSi,r/sF(_5/3,ilr¢))]. (16)

Using(12) _nd (15), onecanestimateF_(,',t) in terms of the structure function
_(r, t) of the resolved-velocity field:

F_(,,t) = 1- \_) H -_c -f2(r,t).

Substituting this expression into (11) yields

with

v,(t) : A _ _c t)

-1/22

(')
lr4/s F

(17)

(18)

(19)

Numerical values for A in terms of its argument r/Ac are given in Table 1.

A(_ =rlAc)

1 0.063
2 0.020

3 0.011
4 0.0071

5 0.0052

Table 1. Ch = 1.4
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In practice, one has to bear in mind that assumption (12) is valid only for _ < 2
and that there are some uncertainties in the value of Ck.

The structure-function model is eventually made local by suppressing the aver-

aging over x, which yields

,,,(x,t)= A (x,,',t), (20)

where _(x, r, t) is the resolved structure function defined by

= + r,t)- ,,.I,=." (21)

For the incompressible isotropic turbulence simulations, the computational grid
was a uniform cubic mesh. The best results were obtained with _ : r/Az : 1

and _(x, r, t) was calculated at each grid point by averaging over the six closest

surrounding points.

3. A Priori Tests of Incompressible Channel Flow

We now consider a velocity field u(x) resulting from the direct simulation of a

turbulent incompressible channel flow. This has a periodic horizontal field (z-z

plane) at the resolution of 128 s grid points, and all the scales of the motion are

explicitly resolved. By convolution with a sharp filter in Fourier space, a large-scale
field _(x) is obtained at a resolution of 32 × 128 x 32. No explicit filter was applied

in the y-direction, normal to the walls.

By filtering the velocity field u(x) obtained from direct numerical simulations, we
can compute _(x). Since u(x) is known, one can compute the actual subgrid-scale

stresses

T_ : UiILj -- _tiltj (22)

and the actual subgrid-scale dissipation

e* -- _ Sij, (23)

Sij being the large-scale strain-rate tensor defined by

(24)

The technique known as a priori test, first applied by Clark, Ferziger & Reynolds

(1979) in the case of isotropic turbulence, is to compare the subgrid-scale values ri'_

and ei_ , predicted by the model, to the actual values r_ and e_j. It is applied here
to test the structure-function model defined in Section 2, in comparison with the

Smagorinsky model. However, one has to bear in mind that the structure-function
model is based on the assumption that turbulence is fully developed at small scale

with a h -s/3 energy spectrum. This is approximately verified in the high Reynolds
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number experiments (see Perry & Chong 1982, where slopes between -1 and -5/3

are found), but certainly not in the case of the field u(x), which was obtained from
a direct numerical simulation at a moderate Reynolds number. It is thus likely

that the actual subgrid.scale dissipation e" defined by (23) is smaller than if it had

been computed from a high-Reynolds-number turbulent field. The aim of the a
priori tests presented here is more to qualitatively investigate the behavior of the

structure-function model in the presence of walls and to develop a way to account

for the anisotropy of both the turbulence and the mesh than to try to match the

actual dissipation e° and the modeled dissipation

= n7 s+J- (25)

Here the modeled residual stress ri'_ is related to the strain-rate tensor Sij through
the eddy viscosity vt:

ri"] = -2 vt Sij; (26)

vt is defined by (20) in the case of the structure-function model. In the case of the

Smagorinsky model, vt is defined by

vt = l z _, (27)

where the subgrid-scale length I is related to the filter width (the size of the coarse

grid) by
l = Az)'/3. (28)

The value of the constant C, is set equal to 0.1, as advised by Deardorff (1970).

This value was also used by PiomelU et al. (1990), but with a damping function

(Van Driest 1956), which is not used here.
We present profiles averaged over the z-z plane and the two statistically sym-

metric sides of the channel. Figure 1 corresponds to the Smagorinsky model. (d _)

peaks at about -4000, whereas (e*), which peaks at about -6, does not even appear

in the figure. Note that no damping function is used in (27).
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The results in Figure 1 are rather insensitive to the scheme used to compute

the derivatives arising in (24): we used both a spectral scheme and a centered
second-order finite-difference scheme and found almost the same result (no visible

difference on the plots). This is thus another confirmation that, in the channel

flow, the Smagorinsky model requires an additional treatment, such as a damping

function.

In order to apply the structure-function model to the channel flow, it is necessary
to assume some properties of homogeneity or isotropy. Several different options __are

possible, each of them leading to a definition of the resolved structure function F2:

(a) Homogeneity and isotropy at small scales, in all z-z planes (parallel to the

walls). This yields a structure function, which will be called here the _-D structure
function, computed at any point M as a function of the velocities at M, and the

four neighboring points MN, Ms, Mw and ME in the same z-z plane as M. In

this case, the length scale Ac corresponds to the horizontal mesh size Az _ Az,
which is constant over the entire computational domain. This option was chosen

by Normand (1990) (see also Normand _ Lesieur 1990) for his simulation of a

supersonic, spatially growing boundary layer.

(b) Three-dimensional homogeneity and isotropy of the small-scale turbulence
within the computational cell In this case, the resolved structure function is cal-

culated, as it was above for the isotropic turbulence, with

A_ = (Az A!t Az) '/3 (29)

by analogy with the length scale I of the Smagorinsky model. Ay, which depends

on y, is defined by

Ay -- YMT -- _Ma (30)
2

where MT and MB are the two neighbors of M which have the same horizontal

(z, z) coordinates. This structure function will be henceforth referred to as the 3-D

structure function.

(c) Homogeneity and isotropy at the smallest resolved scale in one direction, viz.

Ay, which depends on y. Here, Ac is chosen to be equal to Ay. The structure
function at M will be called the I.D structure function and computed as a function

of the velocities at M, MT and Ms.

Let us first consider option (a): if Az equals Az, we take Ae = Az : Az and

the resolved structure function is

--F2,D(A¢,M) = 41[llu(M) - u(ME)II 2 + Ilu(M) - u(Mw)l[ 2

+llu(M) - u(MN)II 2 + Ilu(M) - u(Ms)ll2]. (31)
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In fact, for the grid used in the simulation of channel flow, Az was different from

Az. We thus set Ac = min(Az, Az) and applied (31) with linear interpolation:

-- 1 [ ("kc'_ 2F2,_(Ac, M) = _ \Az]

+ \,,._)

(llu(M) - u(ME)II2+ Ilu(M) - u(Mw)ll 2)

(llu(M) - U(MN)II2 + Ilu(M) - u(Ms)ll2)]. (32)
J

Figure 2 shows (e m) and (vt) for a resolved structure function computed after (32).

This model is still much too dissipative with peak (e") of about -560. However,

the behavior near the wall is better than that with the Smagorinsky model.

Option (b) was tested, with a resolved structure function

1
[llu(M) - u(ME)II2 + Ilu(M) - u(Mw)ll 2

+llu(M) - u(MN)II2 + Ilu(M) - u(Ms)ll _

+llu(M) - u(MT)II2 + Ilu(M) - u(Me)ll 2] (33)

with Ac defined by (29). Figure 3 shows the results: the profiles have the same

shape as before, with slightly better peak values.

Option (c) yields the resolved structure function

-- 21[ ( _ _IT IAC_2F2,v(Ae, M) = \ Ilu(M)- u(MT)H 2

+x( -" : Ilu(M)-u(MB)II' (34)
_YB /

with AyT = lYM: -YMI, AyE = lYMs --YMI, and Ac : min(AyT,AYB) . Figure

4 shows better agreement between the peak values of {e m) and (e").
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4. Compressible Isotropic Turbulence

Among the previous attempts for the development of subgrid-scale models for

compressible flows is the work of Erlebacher el al. (1987). They Favre-filtered the

Navier-Stokes and energy equations. They proposed to close the system by introduc-

ing several Smagorinsky models and determined the corresponding constants by use
of the results from direct numerical simulations of compressible isotropic turbulence.

Yoshizawa (1986) developed a subgrid-scale model through asymptotic expansions
about an incompressible state. The applications of this model are limited to weakly

compressible turbulence. In the case of boundary layers, "Morkovin's hypothesis"

(Morkovin 1962; Bradshaw 1977) assumes that small-scale turbulence is not affected
by compressibility if the free-stream Mach number does not exceed 5. This means
that, in this case, there is no feedback from the acoustic and entropy modes onto

the turbulent velocity field. Small-scale energy and temperature fluctuations can

thus be considered as passive scalars, which justifies the use of subgrid-scale models
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developed for incompressible turbulent flows. Following this idea, Normand (1990)

and Normand & Lesieur (1990) used the 2-D structure-function model in a com-
pressible code and simulated a spatially growing boundary layer at a free-stream

Mach number of 5 and a Reynolds number (based on the upstream displacement

thickness) of 104 .

In the present study, the large-eddy momentum and energy equations are solved

in conservative variables (density, momentum, and total energy) for freely decaying

compressible, isotropic turbulence at infinite Reynolds number, i.e. with molecular

viscosity and diffusivity set to zero. This formulation involves the Favre-filtering of

the equations, which leaves several terms that must be modelled (see Erlebacher et
al. 1987). The contribution of these terms is parametrized by the structure-function
model.

We first test the ability of the model to allow a k -5/s range to build up in the

solenoidal kinetic energy spectrum, starting from a non-divergent initial field whose
spectrum decays exponentially beyond a given ki. In the incompressible case, M_tais

& Lesieur (1990) obtained, with the resolution of 48 s, a range of slopes between

-5/3 and -2, starting from t = 8 r0, where 1"0= (u0 ki) -1 is the large-scale-eddy

turnover time, and u0 is the initial rm8 velocity.

In Figure 5, the temporal evolution of solenoidal energy spectrum is shown for
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a compressible simulation at a resolution of 643 and an initial rms Mach number

Mo = uo/c = 0.3. Here, the unit of time is the Taylor-microscale-eddy turnover time

r, = h/Uo, somewhat smaller than r0. At t = 12 re, which corresponds to the end
of the simulation, a range of Mopes between -5/3 and -2 is found around k = 10.

This is, at least, consistent with the incompressible results of M4tais & Lesieur

(1990) at a comparable stage of temporal evolution, i.e. earlier than t = 8 r0.

By investigating the DNS database, Erlebacher et al. (1987) found that, in com-

pressible turbulence, the turbulent Prandtl number Pet is about 0.4, viz. smaller
than the commonly accepted incompressible value (_ 0.7) approximately by a fac-

tor of the specific heat ratio 3'. We thus tested the effect of Pet on the evolution

of the solenoidal energy and density power spectra (Figure fi). As expected, de-

creasing Prt brings about more dissipation of density variance, and this is also
visible in temperature and pressure power spectra. However, the evolution of the

solenoidal energy spectrum does not show any appreciable dependence on Prt ; this

supports the aforementioned statement that the feedback from the acoustic and

entropy modes into the turbulent velocity field can be neglected, at least when the
turbulent Mach number is not very high.

We also compared the predictions of the 1-D and the 3-D structure-function

formulations. Figure 7 shows a slight difference between the two predictions, which

may be due to the reduction of the sample size when using the 1-D formulation.
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k

FIGURE 7. Comparison of 1-D energy spectra for the 1-D and 3-D formulation of

the structure function : -- 1-D formulation, .... 3-D formulation.

5. Conclusion

The aim of the present work was to investigate the extension of the structure-

function SGS model developed by M_tals & Lesieur (1990) to compressible flows in

the presence of mean shear. The study was split into two parts:

First, a priori tests were performed in the case of an incompressible turbulent

channel flow. In all three formulations (3-D, 2-D or l-D), the eddy viscosity and

dissipation approached zero at the walls, without requiring any damping function;

this is a considerable improvement over the Smagorinsky model. The formulation

of the structure-function model strongly resembles that of the Smagorinsky model
when the derivatives arising in the latter are computed by means of a second-order

centered scheme. The computational cost of the two models are thus comparable.

Several attempts to recover correct peak values for the subgrid-scale dissipation

have suggested the use of a 1-D formulation of the structure function, although the

reduction of the sample size (as compared to the 3-D formulation) introduces some
scatter in the estimate of the energy concentrated locally at small scale.

Second, simulations of freely decaying compressible isotropic turbulence at infinite

Reynolds number led to spectra of developed turbulence, up to an initial rmj Mach

number of 0.6. This, together with the insensitivity of the solenoidal energy spectra

to the value of the turbulent Prandtl number, suggests that such simple models
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derived from incompressible turbulence can be applied to large-eddy simulations of

compressible flows, provided the turbulent Mach number and the density gradients
are not very high. For initial rm_ Mach numbers larger than 0.8, the model fails,

probably due to formation of eddy shocklets. In this case, the solution may be
to refine the model to take into account the additional dissipation due to these

shocklets (Zeman 1990).
The main conclusion of this work is that the concept of structure functions can

provide a valuable subgrid-scale model for simulation of compressible shear flows
with non-cubic meshes. A priori tests are quick and economical tools to qualitatively

check the behavior of a model, e.g. at the walls; however, they may not give

quantitatively accurate results, since they strongly depend on the turbulence level
in the sample field u. Thus, the fact that the Smagorinsky model and the 2-D and
3-D structure-function models all predict much greater dissipations than • _ does not

necessarily mean that these models are worthless. One could for instance invoke

the spatially growing supersonic boundary-layer simulation performed by Normand

(1990) with the aid of the 2-D structure-function model. The level of turbulence
reached in this simulation could not have been obtained if the model had been as

dissipative as suggested by the present a priori test (see Figure 2). Consequently,

the global result of this a priori test has to be interpreted as an encouragement to
carry on the validation of the different formulations of the structure-function model

by performing large-eddy simulations and comparing the results with experimental

results at high Reynolds numbers.
The first author would like to thank the CTR for selecting him for this Summer

Research Program, which proved most fruitful.
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A new sub-grid scale model is presented for the large-eddy simulation of com-

pressible turbulence. In the proposed model, compressibility contributions have

been incorporated in the sub-grid scale eddy viscosity which, in the incompressible

limit, reduce to a form originally proposed by Smagorinsky (1963). The model has
been tested against a simple extension of the traditional Smagorinsky eddy viscosity

model using simulations of decaying, compressible homogeneous turbulence. Sim-
ulation results show that the proposed model provides greater dissipation of the

compressive modes of the resolved-scale velocity field than does the Smagorinsky

eddy viscosity model. For an initial r.m.s, turbulence Mach number of 1.0, sim-

ulations performed using the Smagorinsky model become physically unrealizable

(i.e., negative energies) because of the inability of the model to sufficiently dissipate
fluctuations due to resolved scale velocity dilatation. The proposed model is able

to provide the necessary dissipation of this energy and maintain the realizability of

the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate

energy independent of the Kolmogorov energy cascade. A possible parameterization

of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.

1. Introduction

Compressibility effects in turbulent flows depend mainly on the r.m.s, fluctuat-

ing Mach number, Mr, defined as the ratio of the r.m.s, fluctuating velocity to the
mean field sonic velocity. Direct numerical simulations (DNS) of homogeneous tur-

bulence indicate that, in general, the direct compressibility effects on turbulence are

insignificant if Mt : O(10 -1) in the sense that the solenoidal (rotational) part of

the fluctuating velocity field and the acoustic (irrotational) field are decoupled. The
acoustic field, which is determined mainly by initial conditions, plays only a passive

role in the overall turbulence dynamics (BlaisdeU 1990, Zeman and Blaisdell 1990).

Only when Mt exceeds a value of about 0.3 does compressibility begin to noticeably

influence turbulence dynamics and structure. Further increase in M_ may lead to
formation of shock-like structures or turbulent shocklets. Shocklet formation has

been detected in the DNS of decaying turbulence when the initial value of M_ ex-

ceeded 0.5 (Lee, et al. 1990). In the DNS of homogeneous shear turbulence, Blaisdell

(1990) detected shocklets for Mt _> 0.7. Zeman (1990) suggested that weak shock-
lets may be responsible for the growth rate attenuation in shear layers and proposed
a physical model for shocklet formation and the associated (dilatation) dissipation.

1 Center for Turbulence Research
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On the basis of the DNS results and experimental evidence in mixing layers (e.g.,

Papamoschou and Roshko 1987), compressibility effects may be broadly classified

by the magnitude of Mr. Thus, we shall refer to the range 0.3 < Mt < 0.6 as mod-

erate Math numbers whereby the compressibility effects are observable but with no

formation of shock-like structures (which signifies interactions between compressive

(acoustic) and solenoidal fields). At larger Mach numbers, Mt > 0.6, a full scope

of compressibility-induced effects may be expected, such as shocklet and baroclinic

vorticity generation and significant solenoidal/compressive field interactions.

In large eddy simulation (LES) techniques, the r.m.s, velocity of subgrid-scale

turbulence is smaller by the order O(Az/L) 1/s than that of the energy containing

eddies of scale L. The lower limit on the mesh size/_z is set by the computer. In

the LES calculations presented later in section 4, L//kz ._ 30, and it follows that

the r.m.s. Mach number associated with subgrid scales is (Mt),g = Mt(Az/L) 1/3 ._

0.3Mt. Thus, for realistic resolved-scale Mach numbers M_ < 1, the subgrid scale

turbulence can be considered as incompressible but acted on by the large-scale

compression and/or expansion and by inhomogeneities in the resolved thermal field

as well. In section 2, we describe a formulation of a Smagorinsky-type SGS model

which incorporates these compressibility contributions.

The possibility of occurrence of shocklets (at larger-than-moderate Mach num-

bers) presents a problem which must be treated separately from the SGS modeling.

We can envisage that in the real flow a shocklet will have formed whose cross-section

is sketched in figure 1. Because the shocklet is formed by the large-scale motions, it

is expected to span an area of several mesh sizes, but since the shock thickness (Am)

scales on viscosity, the gradients and dissipation associated with the shock front

cannot be resolved in LES. It may be shown that the ratio )_o/Az is proportional

to (p/Ap)(L/Az)ReL 1, where ReL is the large scale (turbulent) Reynolds number

and Ap/p is a relative density jump across the shock. Because ReL is arbitrar-

ily large, _, will always be a negligible fraction of/Nz and, therefore, the actual

shock front will be smeared over several mesh points and the shocklet dissipation

underestimated by the order O()_o/AZ) (Zeman 1990). The shocklet dissipation

rate is locally very high and is independent of the Kolmogorov energy cascade and

of the SGS turbulence. Therefore, it cannot be made a part of the SGS mode,

and the only alternative is to represent the shocklet-indueed effects by means of

added (virtual) stresses in the resolved-scale governing equations. This approach is

described in section 3. The LES numerical method is described in section 4, and

computational results of LES of decaying compressible turbulence are presented in

section 5. Section 6 concludes the report.

2. Large-scale compressibility effects on SGS energy and viscosity

The set of compressible LES equations obtained by Favre filtering the governing
equations are

O--t + Ox, - 0 (1)
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FIGURE 1. Schematic of a shocklet in a computational grid.

_(_ _)+ (_v_e,) = -_, + azj a.j (2)

-_(-_E) + (-_UjE) = _ + _ + _zj
O_j Oqj (3)
Ozj Ozj

(4)

(5)

(_),_j = Pe_ - Pet _ _--7

Here, Ui, P, T are velocity, pressure, and temperature and E = c_T + ejuj/2 is

the total energy per unit mass. The viscous stress tensor is represented as _rij in

equations (2) and (3). The field decomposition is X = -_ + z, where ._ = p'-X/_ is

the filtered (resolved) quantity and, as opposed to incompressible flows, is obtained

through Favre filtering. The sub-grld component of the variable X is denoted as z.

The proposed Smagorinsky-type closures to the stress tensor _ij and heat flux qj

are
1 2

n_Lj= u'_j = --2VTSi_ + _q 6ij (7)

q__L_= _, o_ (8)
c,_ = -ali Oz-'-_

where

I - Uj,i - 2
S'i= _(e,,_ + _V • 0_,_) (9)

is the trace-free strain rate tensor, q_ = uTu j is (twice) the Favre-averaged kinetic

energy of SOS turbulence, and VT and aij are, respectively, eddy viscosity and

(tensor) eddy diffusivity due to SGS turbulence. Now our task is to parameterize



50 K. D. Squires _¢ O. geman

the effect of the resolved compressive field on the SGS viscosity and diffusivity in a
functional form

UT = VToF(M_, V . U, VT, VP), (10a)

aij = Pr_lVToHij(M,, V . I5, VT, VP), (10b)

where VTo _ (zx=)21Sul is the (Smagorinsky) viscosity, and Prt is the turbulent

Prandtl number in the incompressible limit Mz = 0. Also, in this limit F --, 1,

and Hij -, 8O. With the aid of the fluctuating part of the equation of state, the
pressure-flux term 7ri = pui can be expressed as

_ri = R(-ptui + Tp'ui). (11)

As mentioned already, it is justified to treat the SGS turbulence as incompressible;

therefore, _'i is negligible compared to either of the terms on the RHS of (11) and
tui/T _ -p'ui/-fi. In order to determine the functions F and Hij in equations (10a)

and (10b), we shall ap_oximate the conservation equations for SGS turbulence en-
ergy q2 and heat flux tui as in second-order closure schemes, with the resolved scale

motions acting as the mean (input) field. Neglecting the third-order correlations,
2the transport equations for q and _ may be expressed as (e.g., see Zeman 1990)

u

Dq 2 OP 1 2_ + ppUjjD--S-= -2 s'j - q2V. 0 - (12)

- uiui-ff-- '-- (13)
Dt ozj - tuj_ ChtU, A.

The average of the fluctuating velocity ui is by definition, _i = -p'ui/p and ac-

cording to (11) (with 7ri = 0) it is approximated as _i _. tu"_/T. The fourth term

in (12) represents the SGS solenoidal dissipation eo = qa/A; the dissipation scale A
scales on the mesh size Az and will be determined later. The constant Ch in the

heat flux equation (13) is the tendency-to-isotropy constant and its value is dictated

by the Prandtl number Pr_; typically, Ch _ 6.5. Employing the inertial subrange

relations, we find that the convective derivative terms in (12) and (13) are of order
O(Az/L) 2Is smaller compared with the principal right-hand-side (RHS) terms and

are neglected. Since the convective derivative terms are small and the sub-grid scale

turbulence Mach number is also small, the last term in equation (12) representing

the pressure dilatation correlation of the sub-grid scales may also be neglected. It
should be remarked, however, that the convective-term discard may not be justified

in the regions containing shock-like structures (see section 3).

In order to obtain expressions in the form (10), we shall recast (12) and (13) in
terms of the SGS viscosity VT and write

VT = flAq (14)
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where fl is presently an undetermined constant. With the aid of (7) and (14),

equations (12) and (13) can now be solved for VT, alj, q2, and Prt. To first order

in V- U we obtain

Is: lv.O, (15)

and
VT VT A , (16)

As mentioned earlier, Prt is related to the tendency-to-isotropy constant Ch; from

the second-order closure equations we obtain Prt _ Ch/8.12 = 0.8 (Zeman 1990).

The viscosity constant /3 in (14) must be such that in the incompressible limit

Mt = 0, the SGS viscosity approaches a well-tested Smagorinsky value vTo =

(CoAz)2IS;jl. The obvious choice here is A = Az and, hence, fl = C**/s. An

accepted value for the Smagorinsky constant is C, = 0.2, and this gives fl = 0.12.
A more accurate analysis, based on the inertial subrange relations (e.g. Tennekes

and Lumley 1972), gives

q (k)t (17)
,. =

where k ,_ r/Az is the smallest SGS wavenumber and a _ 1.5 is the Kolmogorov

constant. From (17), A = (2a)Sl2Az/_r _ 1.65Z_z and then fl = 0.06. Tests of the

SGS model represented by the closure equations (7), (8), and (14)-(16) showed a

reasonable insensitivity to the choice of _ and, therefore, the results presented in

this paper were obtained using A = Az.

3. Virtual shocklet stresses

As mentioned earlier, in LES the information on shocklet occurrence is lost due to

a lack of resolution, and the total energy dissipation is likely to be underestimated.
The would-be shock front is numerically diffused and may manifest itself by numer-

ical instability. Here, an approach is suggested to reconstruct the shocklet effects

through inclusion of additional (virtual) stresses in the resolved scale equations.

These virtual stresses depend on the local Mach number m = (UjUj)I/_/a(T), the

density (or pressure) gradients, and possibly on molecular properties. The princi-

pal purpose of this stress reconstruction is to recover some part of the dissipation

associated with the possible shock structures.
The idea of the virtual stress parameterization is based on the model and theory

of shocklet dissipation developed by Zeman (1990) and on the assumption that

although the actual-flow shock structure cannot be resolved in the LES, the actual
and LES fields share statistical properties of energy containing motions. Thus, we

assume that the actual (or DNS) and LES fields have the same pdf p(m) of the

fluctuating Mach number re(x, t) and that the local density (or pressure) gradients

and V. U are, in combination with m(x,t), sufficient indicators of an unresolved
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shock event. Then, one of the plausible ways to express the virtual stress divergence

due to an unresolved shocklet (to be added to the RHS of equation (2)) is

= V"O, (18)

where pj(z, y, z) is a conditional, shock probability function which is an indicator of

the virtual shock occurrence; the necessary but not sufficient condition for the shock
occurrence is m > 1 andV. U < 0. According to (18) the shock stress divergence

is in the direction of the density front V_, and we convince ourselves that equation

(18) gives a correct magnitude of shocklet dissipation by forming the kinetic energy

equation for the resolved scales, K = UjUj/2. With (njj)0ht added to the RHS of

(2), we obtain

DK
-- --((rij),hkUi)j + (rlj),hkffri,j + other terms. (19)

Dt

The (dilatation) dissipation due to the virtual shocklet is the second term in (19)

and with (18) we obtain

DK rn_ - 1
D--t- o¢ +V. lJ-_a2(--rn )2P'(m' _j' V_) = -e,h_. (20)

Note that the differential operation is not to be applied to the scalar function in rn

and to p,, since these serve only as rescaling and probability measures.

The proposed parameterization of shocklet dissipation in LES will have to be ver-
ified by comparing DNS of shocklet turbulence with a corresponding LES field. The

comparison might be difficult to interpret in nonstationary (decaying) turbulence

simulations. To this end, we shall attempt in the future to generate a stationary

turbulence field at sufficiently high r.m.s. Mach number by random forcing applied

at the largest scales.
As a final point, we should keep in mind that the large-scale shock front may

have a significant effect on the (presently neglected) convective terms in the kinetic

energy budget of SGS turbulence (12). Since the average velocity U, normal to the

shock front must be of the order of the sonic speed a, then the advective derivative
2

Ujqj in (12) could be of order aq 2/Az and, therefore, larger than the primary terms
such as the dissipation eo oc q3/Az. Inclusion of these shock front advection effects
in the SGS models has not so far been considered.

4. Simulation methods and parameters

The Favre-filtered equations for a compressible fluid (equations 1-3) were solved

for the case of temporally evolving homogeneous turbulence. Since homogeneous
turbulence is in principle unbounded, numerical simulation of these flows employ

periodic boundary conditions in a finite computational domain. The application

of periodic boundary conditions typically permits extremely accurate schemes for
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the evaluation of spatial derivatives. In the numerical method used for the present

work, spatial derivatives are evaluated using high-order accurate compact finite
differences. These difference schemes possess spectral-like resolution (see Lele 1990),
and the formal order of accuracy of the scheme used in the present work is sixth

order. The discretized equations were solved using 323 grid points and were time

advanced using a third-order Runge Kutta method.
It should be remarked that the filtered momentum and energy equations shown

in section 2 contain terms which may not be greatly simplified foUowing the ill-

tering of the governing equations. For example, no appreciable simplification of
the viscous stresses in the momentum equations or the viscous dissipation terms in

the energy equation is obtained by filtering equations (2) and (3). In fact, since

the energy of the flow is computed using the transport equation for total energy, a
number of additional terms arise following the filtering operation. It is important

to remember, however, that many of these terms, e.g., the viscous dissipation terms

in the energy equation, are negligible at high Reynolds numbers (at least away from

solid boundaries). Other terms are assumed to be represented by the sub-grid scale

model.
The initial conditions for all simulations were identical to those used by Lee, et

al. (1990), i.e., the initial velocity field is constrained to be divergence free, and
there are no initial density or temperature fluctuations. The velocity fluctuations
were also constructed from an initial energy spectrum of the form

E(k)-- at'exp [-2(t/k0)2]. (21)

Simulations were performed using the SGS model shown in section 2 and com-

pared to results obtained using an 'incompressible' Smagorinsky-type model, i.e.,

a sub-grid scale model neglecting corrections for resolved-scale velodty dilatation.
This model wiU be referred to as the Smagorinsky model and is summarized below

ri__j= -2vTS*j + 1-q2_ij, (22)
-_ 3

q_ _ OT (23)

where

VT= 2v A 2IS' l,

t/T biT S j,

(24)

(25)

and

q2 = 2flA 2 [Si*j]2 " (26)

As mentioned in section 2, the value of the constant fl was determined by consid-

ering an incompressible limit, i.e., the limit which yields the Smagorinsky model

shown above. Following this limit process, the value of the constant fl used for the
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simulations presented in this paper was 0.12. The reader is referred to section 6 for

further discussion considering determination of the constant. This value of/3 corre-

sponds to a value of the Smagorinsky constant, C°, of 0.2. It is should be remarked,

however, that a value of Co = 0.2 is larger than the value of 0.092 determined by

Erlebacher, et al. (1990). Erlebacher, et al. determined the constant from direct

numerical simulations of compressible homogeneous turbulence by correlating exact
and modelled stresses.

The remaining parameter for the sub-grid scale model is the value of the turbu-

lent Prandtl number, Pr_. As shown in section 2, Pr_ is related to the tendency-

to-isotropy constant, Ch. Using the second-order closure equations, a value of

Prt = 0.8 is then obtained. Alternatively, one can also show that filtering the

pressure-work term in the energy equation gives rise to an additional sub-grid scale

heat flux (i.e., other than that arising from filtering the convective terms). This

additional flux augments the overall SGS heat flux by a factor of _,. If the ratio of

the sub-grid scale fluxes of momentum and heat are considered to be the same as

in incompressible turbulence, then the turbulent Prandtl number for compressible

turbulence must then be reduced by a factor of 3'. A widely accepted value of Prt for

simulations of incompressible turbulence is 0.7. Accounting for the reduction of Prt

by the additional sub-grid scale heat flux from the pressure-work term, the value

of the turbulent Prandtl number for compressible turbulence is then Prt : 0.5. It

is interesting to note that this value is the same as that determined by Erlebacher,

et al. (1990) using their DNS database. No tests were conducted in the present

study to investigate the influence of Prs on the computed flow fields, and a value

of Prs : 0.5 was used for the results presented in section 5.

Since the initial density and temperature fields were considered to be uniform

and the initial velocity field was solenoidal, the properties of the initial fields may

be specified by the Taylor-microscale Reynolds number, Rea (: u')_/v), and the

turbulence Mach number, Mr. The values of Ms for the three cases investigated in

the present work were 0.61, 0.8, and 1.0. The corresponding values of the Taylor-

microscale Reynolds number were 50, 65, and 83. For each of these Math numbers,

simulations were performed using both the Smagorinsky eddy viscosity model and

the proposed model that incorporates additional terms representing the effect of

compressibility.

5. Results

Shown in figure 2 is the time development of twice the resolved-scale turbulence

energy for an initial turbulence Mach number of 0.8. The time axis in figure 2,

as well as figure 4, has been made dimensionless by the eddy turnover time, _'e, in

the initial field. The two curves shown in figure 2 correspond to the Smagorinsky

eddy viscosity model and the proposed model which incorporates corrections due

to resolved scale compressibility. As is evident from the figure, there is negligible

difference between the resolved-scale energy obtained using either the Smagorinsky

model or the proposed model. This result is consistent with that obtained at the

lower turbulence Mach number, Ms = 0.61.
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FIGURE 2. Time development of turbulence kinetic energy for an initial Mt = 0.8.
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Shown in figures 3a and 3b are the radial energy spectra of the velocity and di-
latation fields at t/r_ = 1.3 for an initial Mt = 0.8. Consistent with the results

observed in figure 2, it can be seen from figure 3a that there is negligible difference
between the velocity spectrum obtained using either sub-grid scale model. Figure

3b shows, however, that there is greater energy in the resolved-scale dilatation field

at higher wavenumbers from the computation using the Smagorinsky model than

for the proposed model. Figures 3a and 3b dearly show that the model more sig-
nificantly affects the compressive modes of the velocity as opposed to the solenoidal

velocity components.
The time development of the resolved-scale turbulence energy is shown in figure 4

for both the Smagorinsky and proposed models for an initial Mt = 1.0. As was also
observed for the lower Math number cases, this figure shows that at early times,

the resolved scale energy is virtually identical for both cases. It was also found,

however, that the flow field becomes physically unrealizable using the Smagorinsky
model. The solid line in figure 4 has been drawn up to the instant in time in which

the resolved-scale temperature becomes negative.

The radial energy spectra of the resolved scale velocity at the time step immedi-

ately preceding the instant at which the flow field computed using the Smagorinsky
model becomes unrealizable has been shown in figure 5a. It may be observed from

this figure that the spectra of the velocity fields obtained using both the Smagorin-
sky and proposed model are virtually identical. The mean-square energy obtained

by integrating the spectra were found to differ by only 0.06 percent. The spectra of
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the resolved-scale dilatation field is shown in figure 5b. As could also be observed

in the dilatation spectra from the Mt = 0.8 case, the dilatation spectra obtained

using the proposed model is below that of the Smagorinsky model at the higher

wavenumbers. The mean-square, resolved-scale dilatation at this instant in time

differs by approximately 6 percent for simulations performed using the two models.
This excess in the dilatation field obtained using the Smagorinsky model is suffi-

cient to cause the flow field to become physically unrealizable. Locally, dilatation

fluctuations can become extremely large. The proposed model provides sufficient

dissipation in these regions to prevent the resolved-scale temperature from becom-

ing negative. These results also illustrate that the differences in the resolved scales

obtained using the two models occur primarily in the high-wavenumber end of the

spectrum. It is precisely in this region in which resolved-scale compression and

expansion are most significant.

6. Summary and future work

A new sub-grid scale model for the Large-Eddy Simulation of compressible tur-

bulence has been developed and tested using numerical simulations of temporally-

evolving compressible turbulence. The development of the model was guided by

concepts employed in second-order closure modeling of compressible turbulence.

The proposed model reduces to Smagorinsky's (1963) model for the LES of incom-

pressible turbulence in the limit M_ _ 0 and also requires only one adjustable
constant. The constant is determined from the incompressible limit in which case it

must reduce to a value widely used in LES of incompressible turbulence (C, _ 0.2).
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Simulation results obtained using both the proposed model as we]] as the Smagor-

insky model showed that at turbulence M_h numbers of 0.61 and 0.8 there is neg-

llgibie difference between the resolved scale solenoidal velocity fields obtained using

either model. For an initial Mt : 1.0, it was found that the Smagorinsky model

was unable to provide sufficient dissipation in regions of large compression and/or

expansion. This inability to provide the necessary dissipation in these regions in

turn caused the flow to become physically unrealizable (i.e., negative temperature).

The proposed model, which incorporates the effect of large-scale velocity dilatation,

does provide the necessary dissipation in these regions and maintains the physical
realizability of the flow.

While the usefulness of the proposed model over the Smagorinsky model has

been demonstrated at high turbulence Mach numbers, important issues remain to

be resolved. The effect of shocklet dissipation was not incorporated into the sub-grid

scale model for the simulation results presented in this report. Before incorporating

the virtual shocklet stress (see section 3) into the simulations, the parameterization

should first be verified by correlating modelled shocklet dissipation against actual

shocklet dilatational dissipation. As was mentioned in section 3, such a comparison

may be difficult to interpret in simulations of decaying turbulence. To alleviate

this difficulty, one may apply a body force at the largest scales of the flow in order

to obtain a quasi-stationary state. An advantage of applying an external body

force is that it is possible to maintain a reasonably steady value of the turbulence

NIach number. Comparison of the shocklet stress from simulations of compressible

turbulence which has been artificially forced at the largest scales should be more

meaningful than that obtained from decaying turbulence. Such an effort will be
undertaken in the near future.

Another issue to be resolved is the effect of Reynolds number on the simulation

results. All of the results presented in this report were obtained from simulations

which included molecular effects, i.e., finite Reynolds number. Thus, the role of

the eddy viscosity was to primarily provide the extra dissipation needed in regions

of high dilatation. Since the philosophy behind LES is to compute high-Reynolds
number turbulent flow fields the model should be tested in simulations at infinite

Reynolds number, i.e., zero molecular viscosity and thermal conductivity. Such

simulations will provide a more rigorous test of the proposed model as well as

better demonstrate differences between the proposed model and the Smagorinsky
model.

Finally, a new sub-grid scale model has been presented by Germano, Piomelli,

Moin, and Cabot during this summer program which does not require an a priori

choice of the model constant(s) and also allows backscatter from the small to the

large scales. The formulation of the model is based upon an algebraic identity
between the subgrid-scale stresses at two different levels and the resolved filtered

stresses. This formulation is general enough so that it may be applied to the LES
of compressible turbulence. Therefore, another direction of future work will be to

incorporate the proposed model presented in this paper with the dynamic sub-grid
scale model presented by Germano, et al.
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II. The turbulence modeling group

The turbulence modeling effort was carried out by three separate teams. Aupoix,

Blaisdell, Reynolds, and Zeman used Blaisdell's simulations of homogeneous com-

pressible isotropic turbulence and homogeneous compressible shear flow to examine
various aspects of modeling the energy equation in these flows. Bradshaw and Send-
stud used simulations of channel flow with a spanwise pressure gradient and a 3-D

boundary layer to study aspects of three-dimensional turbulent boundary layers.
Rodi and Mansour used simulations of channel flow to evaluate various aspects of

k - e modeling in the near-wall region, producing two contributions to this volume.

These studies again demonstrate the powerful uses that can be made of simulation

databases in guiding the development of turbulence modeling.

Aupoix et al. showed that the dilatation dissipation and pressure-dilatation terms

are important in the kinetic energy equation and should not be neglected in tur-
bulence models. In decaying isotropic turbulence, these terms depend critically on

the initial conditions, specifically on the strength of the initial density fluctuations.

However, in homogeneous shear flow, these terms approach limiting behavior that

is independent of the initial conditions. The simulations show that the limiting
value of the ratio of dilatational dissipation to solenoidal dissipation is about 0.1

and hint that there may be a limiting turbulent Much number of approximately

0.7. Models for evolution of the rms pressure fluctuation and for key terms in the

transport equation for pressure-velocity gradient term were also explored.
Bradshaw and Sendstad studied the simulation of channel flow with a suddenly-

imposed cross-stream pressure gradient. They showed that the main effects occur
in the viscous region and found some support for ideas about toppling suggested

earlier by Bradshaw and Pontikos. They initiated a three-dimensional spatially-

developing boundary layer calculation similar to an earlier Bradshaw experiment
and show some preliminary results from calculations not yet well-developed. These

preliminary results indicate that the shear stress vector and velocity gradient vector

are not aligned in the outer region of the boundary layer. More detailed conclusions

must await the completed calculation.
Rodi and Mansour's first paper on low Reynolds number (near-wall) modeling of

the k - _ equation concentrated on the evaluation of various "damping function"

models. They show that the treatment of the eddy viscosity coefficient C, as

a constant (0.09) is at best a rough approximation, and significant tempering of
that coefficient as a function of the production/dissipation ratio is required. They

proposed improved damping functions for use in standard models. Perhaps the
most significant result came from their investigation of Durbin's suggestion for use
of v'--_ instead of k to set the velocity scale. They showed that with this change it

is not necessary to use empirical damping functions; hence, this approach gives a
cleaner and more physical model. They made a detailed study of the various terms

in the _ budget, using the results to make a careful assessment of existing models.

They identified areas of weakness in the models and proposed new models for the
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important terms in the e equation, parameterized by the local non-dimensional

strain rate and Reynolds number. Their new model is clearly an improvement in

the case of channel flow. Subsequent work will test these models in more general
situations.

Rodi and Mansour's second paper focuses on one-equation modeling, especially

Durbin's ideas on the use of v '_ instead of k to give the velocity scale. As noted

above, this model does not require damping functions used in existing near-wall

models. When used in a onc-equation model it requires a correlation for u'v'/v '2

and v'2/k, for which they provide models baaed on the channel flow simulations.

Together with simple linear length scale prescriptions and the k equation, these

correlations provide a simple one-equation approach very deserving of further eval-

uation in more complex flows.

During the summer school, this author gave an informal workshop in which a

new type of turbulence model based on a one-point "eddy structure tensor" that

contains two-point information was described. This model has since been shown

to do remarkably well in predicting the rapid distortion behavior of a very wide

variety of homogeneous turbulent flows and a good job in homogeneous shear flow

with either weak or strong shear. Working notes giving the current status of this

model are available upon request to the author.

W. C. Reynolds
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Modeling the turbulent kinetic energy equation

for compressible, homogeneous turbulence

By B. Aupoix 1, G. A. Blaisdell 2, W. C. Reynolds s, AND O. Zeman 3

The turbulent kinetic energy transport equation, which is the basis of turbu-

lence models, is investigated for homogeneous, compressible turbulence using direct

numerical simulations performed at CTR. It is shown that the partition between
dilatational and solenoidal modes is very sensitive to initial conditions for isotropic

decaying turbulence but not for sheared flows. The importance of the dilatational

dissipation and of the pressure-dilatation term is evidenced from simulations and a
transport equation is proposed to evaluate the pressure-dilatation term evolution.

This transport equation seems to work well for sheared flows but does not account
for initial condition sensitivity in isotropic decay. An improved model is proposed.

1. Introduction

1.1 Turbulent kinetic energy equation

Industrial turbulence models, i.e. one-point closures, commonly use transport

equations for averaged quantities. The first equation to be considered in one- or

two-equation models is the turbulent kinetic energy equation.
For compressible flows, it is convenient to use Favre averaging. We use - and '

to denote respectively an ensemble average and the fluctuation with respect to the

ensemble average, and "" , a Favre average, and fluctuations with respect to the

Favre average.
From the continuity and momentum equations, it is possible toNdeduce a transport

equation for the turbulent kinetic energy per unit mass, k = 1 , ,,_ui ui ,

O-pk
0---[+ - pui J_j- _Ozj 1-1" Ozi +

(2) (3) (4) (5)

q- _ --_pU i u i u k q- u i rik - p'H

(1.1)

1 ONERA/CERT Department of Aerothermodynamics

2 Stanford University

3 Center for Turbulence Research
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Term (1) is the advection term, while term (2) represents the turbulent kinetic
energy production due to the action of the mean velocity gradients upon the tur-

bulent stresses. These terms are exact and do not require modeling, besides a way

to compute the turbulent stresses.

The terms to be modelled are (3), which is the dissipation due to the work of the
viscous stress

[ou, 0.5 1
_'ij = P [Ozj -F Ozi _ ii_--_xhj ; (1.2)

the pressure-dilatation term, (4); the mean pressure gradient term, (5); and the

diffusion term, (6).

The dissipation and diffusion terms already exist in incompressible flows, while
the pressure terms (4 and 5) are due to the flow compressibility. We shall, however,
see in section 2 that flow compressibility also affects the form of the dissipation
term.

1.It Data bases .for the modeling of the turbulent kinetic energy equation

Direct numerical simulations (DNS) of compressible, homogeneous turbulence are

underway at CTR. For compressible flows, homogeneity requires that the mean pres-
sure, temperature, and density be constant over space and that the mean velocity

gradient satisfies the constraint

00fii Ofii Ofik

-_ Ox---_.-F azh 0, 5 = 0 (1.3)

Examples of allowed mean flows include constant flow, shear flow, and time-
dependent irrotational strained flows.

DNS of isotropic decaying turbulence and of sheared flows have been performed by

BlalsdeU [1990]. Since turbulent statistics are point-independent for homogeneous
flows, the diffusion term, (6), is null. As the mean pressure is constant over space,

no direct information is available for the pressure gradient term, (5). We shall,

however, see in section 3 that this term can be modelled together with the pressure-
dilatation term.

I.$ Motivation

Homogeneous flows can be used to investigate models for the dissipation term,

(3), and the pressure-dilatation term, (4). The turbulent kinetic energy balance

of a sheared flow plotted in figure 1 shows that the pressure-dilatation term, often

neglected, is about 10% of the dissipation and is thus important when compared
with the time derivative of the turbulent kinetic energy.

Section 2 is devoted to the modeling of the dissipation term, while section 3 deals

with the pressure-dilatation term modeling.
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FIGURE 1. Turbulent kinetic energy balance for shear flow.

2. Modeling of the dissipation term

t.1 Decomposition of the dissipation term

As shown in figure 1, DNS confirms the a priori idea that the contribution of

viscosity fluctuations to the dissipation is negligible. For homogeneous flows, the

dissipation term can thus be written as

" 4 _u'! "
o%i _ ,, . -_--*°'_J___#u_i _ i +

pe=rij_gz_ _ 3 Ozi

flea

(1.4)

where w is the vorticity.
The solenoidal dissipation, _,, represents the contribution of the vorticity, i.e. the

usual form of the dissipation term in incompressible homogeneous turbulence. The

dilatational dissipation, ed, is due to the flow compressibility.

For homogeneous flows, it is possible to split the velocity field into a solenoidal

part (normal to the wave number vector in Fourier space) and a dilatational part

(parallel to the wave number vector). The above splitting of the dissipation term
then reflects the splitting of the velocity field. It must be pointed out that this

splitting of the velocity is not unique in inhomogeneous flows. However, for inho-

mogeneous flows, the dissipation term, (3), can stiU be split into solenoidal and

dilatational parts pluJ a diffusion term.
The solenoidal and dilatational dissipations are plotted as part of the balance

presented in figure 1. The dilatational contribution is small compared with the
solenoidal one, about 10%, but is not negligible in the balance.

#..#, Ezisting modeb

Sarkar et al. [1989] confirmed, from DNS of isotropic decaying turbulence, the

results of their asymptotic analysis which predicts the existence of an equipartition

of energy between the variance of the pressure associated with the dilatational
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velocity field and the dilatational contribution to the kinetic energy. Then, assuming

that the dilatational pressure variance scales with the square of the turbulent Mach

number, Mt = V/_/a, and that the solenoidal and dilatation velocity fields have

similar Taylor microscales, they obtain

ca = M_ eo (2.1)

Zeman [1990] assumes that the dilatation is mainly due to shock-like structures

embedded within the energetic turbulent eddies. From shock relations and an as-

sumed Gram-Charlier pdf for the velocity fluctuations, he states

_d = cDF(M,, K)eo CD "_ 0.75 (2.2)

where K is the kurtosis of the velocity fluctuations.

Both Sarkar and Zeman assume that the evolution of the solenoidal dissipation

is given by the same transport equation as for incompressible flows.

t..$ Comparison with DNS result.s

In the simulations performed by Blaisdell, the ratio of the dilatational dissipation

to the total dissipation is insensitive to initial conditions in sheared flows but is very

sensitive to initial conditions in isotropic decay. This is shown in figure 2.

It seems that the flow keeps a memory of the initial dissipation partition for

isotropic decay but not for sheared flows. This is at variance with the above analysis,

at least for isotropic decay, but Erlebacher et al. [1990] have shown, from linear

acoustics, that the compressible part of the flow, i.e. the acoustic part, can decouple

from the solenoidal part for isotropic decay and reach various asymptotic levels

according to the initial conditions. This analysis holds only for isotropic flows and

low turbulent Mach numbers. From DNS of low Reynolds number (Re_ ,,, 20),

two-dimensional isotropic turbulence, Erlebacher [1990] evidenced a sensitivity to
initial flow conditions.

Another explanation for this behavior is that turbulence remembers its initial

conditions in the final period of decay. As shown in figure 3, the Reynolds number,

Re_, based upon the Taylor microscale An and q, becomes very small for the

isotropic decay case.

To check the influence of the low Reynolds numbers, two new isotropic decay-

ing turbulence runs were performed. To avoid low Reynolds numbers, the initial

Reynolds number was held constant at Re_ __ 50 during the turbulence development

period by decreasing the viscosity, after which teh viscosity was held constant. The

initial turbulent Mach number is 0.5. The sensitivity to initial conditions is still

observed. Consequently, it seems important to keep information about initial con-

ditions in isotropic decay while a unique equilibrium behavior seems to be achieved

in the presence of shear.



CompreJsible turbulence modeling 67

O.4 1

0.3 --_-_-.:--r"
l;_ '-._.............................!.................t...............

l
_ 0.2' _ _

' ' i i
0., l

0 1 2 3 4 5

te0/k0

a. Isotropic decaying turbulence Mto = 0.7

tt

0.4i i I I _,_,-,*
I i I i---L
I ;'_""", | _ I:::=,

/I _14.--k,---_---_, T ................... 7 ...... l

i! % EIll '. * 1 -
0 2-1+3'-'-..... "_'_"---+ ................... _.................." li!.,'_..... ".. i

l!"J ".._ "- I I
L'._"-_---._ 7 .......,..:-..__.-_.,,.,,_,.,,_....

__,_:,.-::,_,,, • ! " . .
0 1-'__" "::::__

|_
o.olr i 1

0 5 I0 15

St

6. Sheared turbulence M:,o = 0.5

FIGURE 2. Dissipation partition time evolution.

3. Modeling the pressure-dilatation term

3.1 Ezisting models

Sarkar et al. [1989] proposed to include the pressure-dilatation term in the ex-

pression for the dilatations] dissipation as, from their isotropic decay simulations,
this term is small and its fluctuations are larger than its average.

The same appro,_ch has been used by Zeman [1990] who later proposed to relate

this term to the pressure-varlance evolution. He uses a return law in which the

pressure variance is assumed to return to an equilibrium value on an acoustic time

scale. Zeman's model [1990a] reads

Ou" Dp' 3
p,,,,__ 1 1

Df : p_ _ p, 2

Dt _'a

(3.1)

(3.2)
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p--_e= __Zq2a2 aM_
1 + ctM_ (3.3)

where equation (3.1), which is given by linear acoustics, has been shown to have

a wider range of validity. Zeman [1990b] also proposed a revised version of equa-

tion (3.3) in which the right hand side (RHS) varies as Mt 2 instead of Mt4.

$._ Modeling of the pressure.dilatation term

DNS of sheared flows have shown that the mean value of the pressure-dilatation
term is comparable to the dilatational dissipation and thus gives a significant contri-

bution to the kinetic energy budget. Moreover, this term exhibits oscillations which

seem to scale on an acoustic time scale and are difficult to model. It appears, how-
ever, from comparisons of two runs with identical initial spectra but different seeds

in the initial random field generation, that these oscillations are due to the noise of

the biggest eddies for which only a small statistical sample is obtained in a single
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simulation. Consequently, we only try to reproduce a smoothed pressure-dilatation

evolution, not its oscillations.

$.?.I Transport equation for the velocity.pressure gradient term

Instead of using linear acoustics and scaling relations, we first investigated the

transport equation for the pressure-dilatation term. The three pressure terms which

appear in the turbulent kinetic energy equation, (1.1), i.e. the pressure-dilatation
term, (4); the mean pressure gradient term, (5); and the contribution of pressure

to the diffusion term, (6), are an expansion of the initial term u"8-_---- i 8z_"

It is easier to derive an equation for - "_ than for the pressure-dilatation term.

Moreover, only for homogeneous flows can the pressure-dilatation term be inter-

preted as an energy exchange term between turbulent kinetic energy and potential

pressure fluctuation energy p'2/27p. However, the term -_ eft; always represents
the reversible energy exchange between the turbulent kinetic energy and the internal

energy.
Assuming that the fluid is a perfect gas, the pressure can be linked to the internal

energy per unit mass, e, as p = (7 - 1)pe so that the energy equation can be written

as a pressure evolution equation. From this equation, together with the momentum

and continuity equations, the transport equation for u" _i o=_ can be derived as

O- ,, Op _ 0 - ,, Op ,, Op 0_ _.ru. ap_ Oi_ 02__u, _ + ,.-_--u, _--

_u" _'" _u'.' o_' 10p Opi V'_l

o=, po=,o ,

+: - [_i - Fui ul ],o Ozi Ozi _ Ozz 8zl

6)

10_r,, Op / cgu" Oq, "_ Ou:'
-I- ("/- 1){'rU,_-'_-_l- oral)p Ozl Ozi

(3.4)

a our ," Oq,')l
dgm,[ ui _ (7 - 1)i_ai'_z i -I-(7 - 1)u;' twij Oz'-'_' oqzg/,J

%

where (a) represents the advection by the mean flow, (b) the mean velocity gradient

effects, (c) the mean dilatation and mean dilatation gradient effects, (d) third order

effects, and (e) the mean pressure gradient effect, while (f) are the viscous terms

and (g) the diffusion terms.
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For homogeneous flows, terms (e) and (g) are zero. Moreover, for isotropic decay

or sheared flows, term (c) is zero. It must also be pointed out that the three terms

p__, lapap
-zul_+ OzzOzi pOz_Ozi

exactly cancel in incompressible flows thanks to the Poisson equation for the pres-
sure.

$.P..?, Closure of the transport equation

The first two terms in (d) can be approximated as

" Oui _ _- -,
P Ozt Oz_ _ _ Ozz Oz_ Ozi Ozl

i.e. these terms blow up as the Reynolds number tends towards infinity. Conse-

quently, the pressure-dilatation budget is the balance of terms which tend towards

infinity while their difference remains finite. A term by term modeling approach
Ou"

cannot be applied. Using an equation for p__L leads to the same behavior at high8zl

Reynolds numbers.

As with the dissipation equation, a heuristic approach is used to include the

physics in a modelled equation. However, equation (3.4) does provide information
about the r61e of the compressibility terms. The modeling of the equation will

be discussed only for homogeneous flows so that we turn back to the pressure-

dilatation term. This term should tend towards zero for incompressible flows, i.e.

it must be damped on an acoustic time scale. All terms on the RHS of (3.4)
cancel in the incompressible limit. On the other hand, DNS are in good agreement

with (3.1) and show that the pressure-dilatation term tends, after some transients,

to be positive for decaying turbulence and negative for sheared flows, i.e. to scale

upon the turbulent kinetic energy temporal evolution. At last, assuming that the
pressure level scales upon M_ and that the production term scales upon an acoustic
time scale leads to the form

d i)u" 1 2dk _ 1 oqu_'
_ P-_z _ = - C1p -_ M ; -_ - C'2-_ p -_z i (3.5)

with
los� 2

w_,= -- C, = 0.25 C2 = 0.2
_a

It must be mentioned that Zeman's model can be rewritten as a transport equation

for the pressure-dilatation term. A somewhat different form, including turbulent

kinetic energy and dissipation time derivatives and a similar damping term is thus
obtained.
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3._..$ Comparison with DNS and geman'J model

The evolution of the pressure-dilatation term given by DNS is compared with

predictions from the above model, (3.5), and from Zeman's model, assuming either

an M_ or M_ behavior in (3.3). Only the evolution of the pressure-dilatation term is
predicted, using the DNS values of kinetic energy, dissipation, and other quantities.

The comparison starts at a time when the turbulent flow is developed. The aim is

to reproduce the mean evolution of the pressure-dilatation term, not its oscillations
which are the signature of the biggest eddies of the DNS.

The comparisons for some sheared flows are plotted in figure 4. Case (4.a), which
is the run with the most gridpoints and the longest development, has been used

to calibrate the coefficients 6'1 and C2. Particular attention has been paid to the

initial evolution of the pressure-dilatation term to avoid the increase predicted by
Zeman's model. As the turbulent Mach number varies weakly, there are several

possible sets of coefficients. However, they eventually lead to similar results for the
other flows. Zeman's models give a good prediction of the pressure-dilatation level

but not of its time derivative; the M_ assumption here seems to be the best.

For case (4.b), the model seems to slightly overestimate the pressure-dilatation

term, but the agreement is fair. Zeman's best model is now the M_ assumption.

For case (4.c), all models predict an unrealistic initial increase of the pressure-
dilatation term. Both the present model and Zeman's M_ model give good levels;

the present model seems to better estimate the time derivative.

The comparison for isotropic decaying turbulence is plotted in figure 5. No model

is able to give good predictions of the isotropic decay case. Zeman's M_ model

gives good prediction of the strong acoustics case while the M_ model gives good

predictions of the low acoustics cases. It is possible to tune the coefficients of our
model to have a fair prediction of case (5.b), but then prediction of the other flows

is poor. This seems again to be due to the sensitivity of isotropic decaying flows to
the initial conditions.

4. Proposals for model improvement

A simple way to improve the modeling of isotropic decaying flows is to account for

the initial partition between solenoidal and compressible modes by using transport

equations for both the pressure-dilatation term and the dilatational dissipation. A

way to extend the above model could be

_ 1 Oui
d '/ -cl P

ded ? ed= wl P + w2L"

where information about the constants and their Mach number dependency could

be deduced from the equilibrium solutions for isotropic decay and sheared flows.
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5. Conclusions

The dilatational dissipation and the pressure-dilatation term play important r61es

in the kinetic energy budget and should not be neglected. The dilatational dissi-

pation scales with the solenoidal dissipation and the turbulent Mach number, but

this scaling also depends upon the initial conditions for isotropic decaying turbu-

lence. A model to predict the evolution of the pressure-dilatation term has been

proposed. It seems to work well for sheared flows but still requires validation and

needs improvement to account for initial condition sensitivity.

Moreover, other important points such as turbulent stress, turbulent heat flux,

and turbulent scalar flux modeling should be investigated. Homogeneous flows can

provide helpful information, e.g. about the role of mean flow dilatation, but inho-

mogeneous flows are to be looked at to investigate the role of density or temperature

gradients.
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Structure of three-dimensional ID

turbulent boundary layers

By P. Bradshaw I and O. Sendstad 1

The changes that occur in the Reynolds-stress-producing motion when a cross-

stream pressure gradient is applied to an initially two-dimensional turbulent flow

are discussed. Two main examples are used; (i) a temporal simulation of a channel

flow with crossflow applied by a spanwise pressure gradient for t > 0, and (ii) a

spatial simulation of the boundary layer on an infinite swept wing, which is still in

progress. Evidence examined to date suggests that the structural changes in the two
cases are similar, but the mechanisms may be significantly different, even if effects

peculiar to the viscous wall region are ignored. The results from (ii) are provisional,
based on too short a time series for accurate statistical averages to be obtained. We

treat turbulence "simulations" (solutions of the Navier-Stokes equations in three

space dimensions and time) in the same way as experiments: both have limitations

of accuracy but both are acceptable representations of real fluid flows.

1. Introduction

Several experiments and simulations have shown significant differences in tur-
bulence structure between two-dimensional and three-dimensional turbulent wall

flows; similar effects are likely to occur in free shear layers but there are no suffi-

ciently detailed data. (Note: here, "2-D" and "3-D" refer to the statistical-average

properties of the flow; instantaneously, turbulence is always 3-D.) There are two

main types of 3-D flow, those where large gradients occur in only one direction

(normal to the wall in the case of a boundary layer) and those where large gradi-
ents occur in both directions in the plane normal to the general flow direction (as in

wing-body junction flows or vortex/boundary-layer interactions). Here we deal only

with the former type. With the exception of the simulations of the Ekman layer

(Coleman, Ferziger & Spalart 1990) and the related 3-D "scrubbing" flow (Spalart

1989), most work relates to the more-or-less sudden application of crossflow to an

initially two-dimensional flow by the action of spanwise pressure gradient or span-
wise motion of a wall. This is a convenient idealization of a typical wing boundary

layer in which crossflow gradually increases with downstream distance, and has the

conceptual advantage of giving the impulse response of the (non-linear) system.

Despite the facts that turbulence is always instantaneously three-dimensional and
that individual turbulent eddies do not see the mean flow as such, noticeable struc-

tural changes can be produced by differences of as little as 10 degrees between the

direction of the external flow and that of the flow near the wall.

1 Stanford University
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These structural changes imply that changes may be needed in the dimensionless

empirical coefficients used in Reynolds-averaged prediction methods (since the co-

efficients are, by definition, structural parameters). The examples most frequently

quoted are that the eddy viscosity for the component of shear stress in the "cross-

stream" direction is smaller than that for the streamwise direction, and that even

the latter is less than in two-dimensional flow. In general, it is incorrect to correlate

empirical coefficients with the mean-flow direction because that depends on the ve-

locity of the observer, but it is legitimate to regard the direction of the initial 2-D

flow as "special" and examine perturbations in axes aligned with the initial flow

direction. For long times after the start of crossflow, the initial flow direction ceases

to be relevant and should in principle be replaced by some fading-memory integral

of (say) the direction of the resultant shear stress. Judging from the smallness of

the structural changes in the Ekman and "scrubbing" flows, compared to those in

flows where crossflow is suddenly applied, the changes are mainly transient. The

simplest explanation is that the eddy structure set up in a two-dimensional flow

takes some time to adjust to a three-dimensional mean strain field, but when it has

done so, structural parameters like the ratio of shear-stress magnitude to turbulent

energy return to something near their "two-dimensional" values.

Here we offer preliminary comments on the mechanisms that lead to the struc-

tural changes. The data set which we aimed to analyze is the simulation of the

spatially-varying boundary layer on a 35 ° "infinite" swept wing initiated at NASA

Ames Research Center by Dr P. R. Spalart (now of Boeing Commercial Airplane

Co.); unfortunately, fully converged statistics are not available at the time of writ-

ing. Therefore, we have devoted some time to the analysis of a time-dependent

("transient") simulation, the initially 2-D channel (closed duct) flow with spanwise

pressure gradient applied for t > 0 (Moin, Shih, Driver & Mansour 1990). As wiU

be shown below, the duct flow is not closely related to wing boundary layers with

spanwise pressure gradients. However, the effects of mean shear in the crossflow

plane, OW/ffy, are likely to be broadly similar in the two cases.

2. The Channel Flow with Spanwise Pressure Gradient

The main results of the simulation are reported by Moin et al. (1990). The initial

2-D flow is the same as that of Kim, Moin & Moser (1987), with uri_/v : 180. At t :

0, a spanwise pressure gradient ten times as large as the streamwise pressure gradient

is applied to produce a positive z-component mean velocity, which in the central

part of the flow (where W is unaffected by viscous or turbulent stresses) is just

-t(1/p)_p/Oz. Because aW/0z : 0, there is no quasi-inviscid skewing of initially-

spanwise vorticity into the spanwise direction, as predicted by the Squire-Winter-

Hawthorne (SWH) secondary flow theorem. Therefore, turbulence quantities are

affected only in the internal layers near the walls, in which streamwise vorticity

0W//_y spreads out from the surface by viscous and turbulent diffusion. In the

Gruschwitz/Johnston "triangular" plot of W against U in axes aligned with the

centerline velocity, the slope in the outer layer is nominally half that in a spatially-

developing flow which has skewed through the same angle in inviscid flow. (In the

inviscid secondary-flow approximation, half the outer-layer slope in the triangular



Structure of $-D turbulent boundary lallerJ 77

I I ! I I I I I I I

FIGURE 1. Rls correlation contours in channel: z - z plane. In figures 1-3,

negative contours are shown dotted.

plot comes from the change in coordinates from the initial z, !t and half from the

skewing of spanwise vortex lines to produce 0W/0y.) After a time t = 0.66/Ur, the
thickness of the internal layer is about 60 wall units (one-third of the half-width

of the channel), the z-component surface shear stress is about 0.68 of the original

z-component surface shear stress, while the x-component surface shear stress has

fallen to about 0.93 of its original value and is still decreasing; the magnitude of

the surface shear stress is about 1.15 times the initial value.

The following discussion is based mainly on the two-point correlations at t =

0.66/ur and y+ = 19.2, near the peak in -F-_, and on budgets for various com-

ponents of Reynolds stress. The correlation data are too close to the wall to be

quantitatively representative of fully turbulent flow, and the bulk Reynolds number
is so low that the total shear stress at y+ _ 20 in the initial flow is only 0.9 of the

wall value, while the maximum in -p_-_ is less than 0.7 of the wall shear stress.

As pointed out by Moin et at., the reduction in -_-F seems to begin with a fall in

vap/Oy, which presumably implies a fall in pOv/av, the rate of transfer of turbulent

kinetic energy from the u component, where it is generated, to the v component.

The last quantity one would expect to be affected by crossflow is one that contains

no z-component quantities!

Sample correlation contours in the z - z and z - y planes are shown in figures

1-3. At t = 0, the correlations are nominally symmetrical or antisymmetrical in z.

At later t they are skewed in plan view and tilted in end view, by markedly differing

amounts. The lengths of the axes marked on these plots are:- z, three channel half-

heights or 540 wall units; y and z, one half-height or 180 wall units. For reference,

the flow angle at the wall is at 36 deg. to the z axis, while at the fixed point of

the correlations, y+ = 19.2, the resultant mean shear and the resultant shear stress
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FIGURE 2. Rll correlation contours in channel: z - y plane.

are at 13.2 deg. and 9.5 deg. to the z axis, respectively. (A large fraction of the

skew in any 3-D flow occurs in the viscous wall region.) Viewed in the z - z plane,

the central parts of the Raa and R12 correlations (and also the R_1 correlation, not

shown here) line up with the stress angle, whereas the R2s correlation contours are

inclined at nearly 17 deg. to the z axis and the Rns contours are inclined at over

20 deg. At large positive or negative separation in the z direction, the correlation

contours tend to line up with the original z axis. This demonstrates quite neatly

that the correlations at large separations are dominated by the unaltered eddies in

the central part of the channel; this is the "inactive" motion, so called by Townsend

(1961) because it is supposed to have such a small v component that it does not

contribute significantly to _-_, and indeed the regions of R22 that line up with the z

axis are quite small. The behavior of the negative regions that appear at large +z in

all correlations except R_s is interesting. In most cases, the positions of the minima

axe only slightly rotated away from the z axis and the contours are aligned with the

central ridge, but the side extrema in Rls are more noticeably asymmetrical. This

may give a clue to the structural alterations that reduce _'#.

Correlation contours in the z - 9 plane show a wide range of behavior. Rll looks

almost as if contours were convected passively by the w-component motion (at this

time, the core fluid has moved a distance 1.85 in the positive z direction). However,

the negative side lobes have different shapes, that on the negative-z side having

become slightly weaker than the other and risen above its original position (Ov/Oz

is, of course, zero, so this is not the result of passive convection). The lobe on the

positive-z side seems to have been slightly flattened. The same features of shearing,

upward drift of the negative-z lobe and flattening of the positive-z lobe are found

in R12 and R21 (where the negative-z lobe has become slightly stronger) but are
only just detectable in R22.
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FIGURE 3. R13 correlation contours in channel: z - y plane.

3. Simulation of the Boundary Layer on an "Infinite" Swept Wing

This simulation is intended as an approximation to the experiment of Bradshaw

Pontikos (1985) in a wind-tunnel test rig approximating a 35 ° "infinite" swept

wing (large span and constant chord, so that mean gradients along the 35 ° swept

generators are nominally zero).

Below, axes aligned normal and parallel to the generators are denoted by z' and

z', while axes aligned with the initial flow direction ("tunnel axes") are denoted

by z and z. The boundary layer initially flowed in the z direction and was then

deflected in the z direction by the pressure gradient in the z I direction. This config-

uration is convenient experimentally because measurements need be made at only

one spanwise position, and is also convenient computationally because averages can

be taken along the generators as well as in time.

The numerical method and the arrangements of boundary conditions will be re-

ported separately. Briefly, the periodic upstream and downstream boundary condi-

tions were imposed by "fringes" in the y - z' plane: the downstream fringe ingested

the flow from the computational domain, removed some of its mass flow rate, and

excreted the downstream. The upstream fringe was identical to the downstream one

- that is, the inlet boundary layer is a greatly-thinned version of the outlet one. The
run of two-dimensional flow before the onset of pressure gradient and crossfiow was

long enough for the perturbed boundary layer at entry to regain normal structure.

To specify the streamwise pressure gradient in the boundary layer, the normal-

component velocity on the upper surface of the computational domain was chosen so

that according to an inviscid flow calculation the pressure distribution on the lower

(solid) surface was nominally the same as in the experiment. In two-dimensional

flow, the representative dimensionless pressure gradient, equal to the ratio of the
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FIGURE 4. Displacement-thickness distribution in boundary layer: provisional
results. Dotted line is "vorticity" definition.

two terms on the right-hand side of the momentum-integral equation

dx -r_+_* , (1)

is (5"/r_)dp/dx. Similar parameters apply in 3-D flow. The Reynolds number of

the simulation is less than a tenth of that in the experiment, so typical skin-friction
coemcients are larger by a factor of about two and, therefore, dp/dz must be larger
by a factor of about two to reproduce the experimental distribution of (6*/r,_)dp/dz.

A first estimate of the required pressure gradient gave somewhat smaller crossflow
than in the experiment, but a second, larger, pressure gradient unexpectedly caused
the flow to separate (i.e. the component of surface shear stress in the z' direction
fell to zero). The reason was that the y-wise pressure gradient in the boundary layer
is smaller than in the inviscid calculation used to determine the required normal-

component velocity on the upper boundary, and as a result, the surface pressure
in the retarded region is higher than in the inviscid flow; this causes increased
boundary-layer growth, which further reduces 0p/_ and increases Op/Oz, which
causes ... and so on. The final, compromise, pressure gradient was chosen late
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FIGURE 5. Gruschwitz/Johnston "triangular" plots in boundary layer: provisional

results, z increases from lowest to highest profile.

in the summer program period, and adequately converged results for higher-order

structure parameters have not been obtained at the time of writing.

Figure 4 shows the displacement thickness, which is itself not very weU converged,

and figure 5 the triangular plot; the adverse pressure gradient begins at about z =
0.8m, where the total boundary-layer thickness is about 0.04m, and the pressure
coefficient rises to just under 0.4 at the end of the useful part of the computational

domain at z =1.4m.

An accompanying simulation of the 2-D boundary layer experiment of Watmuff

(1990), with roughly the same distribution of (6*/w_,)dp/dz, has run into unrelated
numerical difficulties and is also incompletely converged. It is hoped that compar-

isons of the structural parameters in the 2-D and 3-D cases will allow the effects

of low Reynolds number to be subtracted out, leaving an estimate of the effects of
crossl]ow.

4. Effects of Crossflow on Turbulence Structure

Several experiments (v.d. Berg et al. 1975, Bradshaw & Pontikos 1985, Anderson

& Eaton 1987) have shown that when a spanwise component of pressure gradient
forces an initially 2-D boundary layer into crossflow, (i) the direction of the shear-

stress vector (-uv,-vw changes more slowly than the direction of the velocity-

gradient vector au/a.y, aw/oy) (implying that the spanwise component of eddy

viscosity is smaller than the streamwise component for any reasonable definition of

the arbitrary "spanwise" direction), and (ii) the ratio of shear-stress magnitude to
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FIGURE 6. Ratio of shear stress magnitude to turbulent energy, al, in boundary
layer: provisional results.

turbulent kinetic energy decreases (leading to a shortfall in turbulent energy pro-

duction and thus to a decrease in the absolute values of turbulent energy and shear

stress). Qualitatively similar results have been obtained with hot-wire anemometers

and laser-doppler velocimeters, so that instrument error is not responsible. Previous

low-Reynolds-number simulations of near-eqnilibrium flows (above) showed smaller

effects, plausibly attributable to the transience of the structural changes.

The 3-D boundary-layer simulations certainly show this lag in shear-stress direc-

tion, which is qualitatively deducible directly from the Reynolds-stress transport

equations (if compensating behavior of the pressure-strain redistribution term is

discounted), and which is qualitatively reproduced by most transport-equation tur-

bulence models. It is not necessarily a universal phenomenon: Johnston (1970)
showed an advance, rather than a lag, in the shear-stress direction in flow over a

swept step, where large values of streamline curvature, OV/Oz, may have intervened.

In the present boundary layer, -_-_ in the outer layer seems to be of the opposite

sign to that in the inner layer; ipJo facto this cannot be explained by turbulent
transport of -_--_ from below.

The 3-D boundary-layer simulation which proceeded to separation showed a pro-

nounced decrease in the ratio of shear-stress magnitude to turbulent kinetic energy,

al, but at the time of writing, the latest statistics for the non-separating run shows

no significant decrease in this structural parameter (figure 6). Roughly the same
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small decrease in al in the inner layer near separation occurs in the 2-D simulation,

probably as the results of contributions to turbulent energy near the wall by the
"inactive motion" mentioned above. Since the maximum crossflow (W/U) is almost

as large in the present 3-D simulation (figure 5) as in the experiment, the absence
of the decrease in stress-energy ratio cannot be explained away by hypothesizing

that ,1is a rapidly-increasing function of crossflow.

In the experiments, the reduction in stress/energy ratio is accompanied by a
reduction in the dimensionless ratio of triple products to (turbulent energy)3/2;

simulation results are not adequately converged to confirm this finding but are not

in disagreement with it.

Complete budgets for all six Reynolds stresses are being accumulated. Shear-
stress budgets appear to be close to equilibrium between the "generation" terms

(involving mean velocity gradients) and the pressure-strain terms. This is partly
misleading, because the "rapid" part of the pressure-strain term also depends on
the mean velocity gradient and can be interpreted as an immediate opposition to

the generation terms. If the generation terms and the "rapid" term (of opposite

sign) are lumped together, their net sum is roughly equal to the "slow" part of

the pressure-strain term and is not an order of magnitude larger than the mean
and turbulent transport terms. Then, the shear-stress budget looks rather like

the turbulent energy budget. Unfortunately, the "slow" and "rapid" parts of the

pressure-strain term have not been evaluated separately in the present simulation.

5. Conclusions

Study of a previous simulation of 3-D duct flow (Moin et al. 1990) have shown
that the distortion of the isocorrelation contours by crossflow, to first order expli-

cable by pure convection in the crossflow shear plane, in fact involves rotation as
well as shearing of the correlation pattern. In this simulation, crossflow is gener-

ated by Reynolds-stress gradients rather than by skewing of the initial spanwise

vorticity, and strong crossflow is found only within the viscous wall region. There-

fore, although the rotation of the correlation pattern is compatible with the idea of

eddy "toppling" in crossflow advanced by Bradshaw & Pontikos (1985), it cannot

be regarded as proof.
A spatially-varying boundary layer simulation is now being run in the same geom-

etry as an (idealized) 3-D wing experiment of 10 years ago (Pontikos 1980, Bradshaw

& Pontikos 1985). Again, the Reynolds number of the simulation is low enough to
raise doubts about quantitative results, but the numerical accuracy of the output

is not in dispute. The simulation has not yet been run long enough for statistical

averages to be reliable, but when the simulation and its 2-D counterpart have run to
convergence, they will provide test cases for Reynolds-averaged prediction methods

and/or data for the refinement of such methods.
The 3-D boundary layer results available at the time of writing suggest that the

decrease in the ratio of shear-stress magnitude to turbulent energy with increas-

ing crossflow is not as large as has been found in several experiments; however, a
previous simulation which proceeded to self-induced separation and thus incurred
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significant numerical errors did show reductions of the same order as found in ex-

periment. The present simulation suggests that the shear-stress vector in the outer

layer rotates in the opposite direction to the velocity-gradient vector.

Triple products take longer to converge than second-order products; the cur-

rent simulation has not run long enough for meaningful turbulent-transport terms

(derivatives of triple products) to be extracted.
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Low Reynolds number k-e modeling p.
with the aid of direct simulation data

By W. Rodi I AND N. N. Mansour 2

The constant C_ and the near-wall damping function f_ in the eddy-viscosity

relation of the k-e- model are ewluated from direct numerical simulation (DNS)

data for developed channel and boundary layer flow at two Reynolds numbers each.

Various existing f_- model functions are compared with the DNS data, and a new

function is fitted to the high-Reynolds-number channel flow data. The e-budget is

computed for the fully developed channel flow. The relative magnitude of the terms

in the e-equation is analyzed with the aid of scaling arguments, and the parameter

governing this magnitude is established. Models for the sum of all source and sink

terms in the e-equation are tested against the DNS data, and an improved model

is proposed.

1. Introduction

The k-e model has become one of the most popular turbulence models used reg-

ularly in many calculations of flows of practical interest. In the past, k-e model cal-

culations were mostly carried out in conjunction with wall functions bridging over

the viscosity-affected near-wall region. Recently, however, low-Reynolds-number

(low-Re) versions of the k-e model are being used in which the near-wall region is
resolved. These versions contain damping functions and extra terms in order to

account for the observed near-wall effects, and, in most cases, these terms and func-

tions have been marie to depend on the viscosity. A wide variety of model versions

has been proposed in the literature. The pre-1984 models were reviewed in Patel et

al. (1985). Since then, a number of newer proposals have emerged (see e.g. Shih

and Mansour, 1990).
The extra terms and functions in low-Re k-e models have not been derived on

the basis of data but on various modeling arguments, and they have only been

subjected to indirect testing by calculating various flows with the models. The

same is true for the entire e-equation, even the high Reynolds number (high-Re)

version, which must be considered empirical. Direct numerical simulation (DNS)

data are now awilable with which the individual model assumptions can be tested

directly. The data can also be used as a basis for the development of improved

models. The DNS data available are still for flows at fairly low Reynolds numbers,

but they are suitable for examining the near-wall behavior of models and for aiding

the development of realistic models in this region.

1 University of Karlsruhe, F. R. Germany

2 NASA Ames Research Center
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In the work reported here, two main issues were investigated with the aid of

DNS data. The first one is the behavior of the coefficient in the eddy-viscosity
expression in k-e models, particularly near walls. The second issue is the model

form of the c-equation. For high Reynolds numbers, where the energy-containing
and dissipative motions are very different in scale, the exact c-equation provides

little if any guidance. But in low-Reynolds-number regions near walls the situation is

different because the scales of energy-containing motions and the scales of dissipative

motions are the same (Launder, 1986). In this case, the exact e-equation is useful
for identifying and describing the various near-wall influences on e. The terms
in the exact e-equation cannot be measured and therefore information on these

terms can only be obtained from DNS data. The data used in this work were

for developed channel flow (Kim et al., 1987, and Kim, 1990) and for boundary

layers in zero pressure gradient (Spalart, 1988) at two Reynolds numbers each. The
dissipation rate budget could only be computed for the developed channel flow case.

For the lower Reynolds number (Re,. = 180 based on friction velocity and channel

half width), Mansour et ai. (1988) have already provided the e-budget and tested

some model approximations. Here, the e-budget is provided for Kim's (1990) new
channel flow calculations at Re_ = 395. Some of the model versions considered

more successful in Patel et aL's (1985) review are tested against these data and new

model proposals are made for the source/sink terms in the e-equation.

2. Form of low-Reynolds-number k-e models

The k-e model employs the eddy viscosity concept, and for the various low-Re

k-e models proposed so far the relations for determining the eddy viscosity vt can

be written for 2D shear layers in the following form

vt = C_,ft, k2 (1)
e

ot = (v + + v,(u,,) -e (2)
pY

o_[ v,] , ,2b-fie= (,, + + c,,/,-k,,,(u,,,) - + E (3)
,It

i = e - D (4)

The various models differ through the use of different functions fu, fl, f2 and
different terms D and E. In the eddy-viscosity relation (1), C t, is a constant co-

efficient while f_, is a damping function reducing the eddy viscosity near the wall.

Some models use as turbulence time scale k/e and solve an equation for e itself

(effectively putting D to zero), while other models use as time scale k/i and solve
an equation for i which, in contrast to e, goes to zero at the wall. The function

f2 in the i-equation is usually effective only very close to the wall and is intro-

duced to simulate the change in the decay rate of homogeneous turbulence as the



Model

Launder-

Chien

Lam-

Bremhorst

Code

LS

CH

LB

D

2vk/$'i
0

_w - B.C.

vk,lji = 0

C_

0.09

0.09

0.09

Cd

1.44

1.35

1.44

Cc2

1.92

1.8

1.92

or e,l = 0

o'k

1.0

0"_

1.3

1.0 1.3
1.0 1.3

-2vg/y 2 exp -0.5y +)
0

Table la. Summary of Constants, terms and boundary conditions used in existing low-Reynolds number k-e models.

Model Code

Launder- LS

Shaxma

Chien CH

Lam- LB

S/z

exp(-3.4/(1 + Ret/50) 2)

1 - exp(-0.0115y +)

[1 - exp(-0.0165y*)] 2 x

A
°

1.0

1 + (O.05/f_,) a

f3
1 - 0.3 exp(- Re_)

1 - 0.22cxp[- Re,/6) _]

1 - exp(-Re_)

Bremhorst (1 + 20.51Ret)

Table lb. Summary of damping functions used in existing low-Reynolds number k-e models (Ret = k2/ve, y+ = U,.ylv,

y. = kl/2y/v).
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FIGURE 1. f_,-distribution (f_, = vte/C_k 2 with C_, = 0.09). (a) Channel flow

at -- Re_ = 180, .... ReT = 395. (b) Boundary layer at -- Reo = 670,
.... Reo = 1416.

Reynolds number Ret(= k2/ve) becomes small. The extra term E or alternatively

the function fl were introduced to increase the e-production near the wall. A gen-

eral discussion on the functions and extra terms in the various models proposed
until 1984 can be found in Patel et al. (1985). Here, attention is focused on the

damping function f_, and on the e-equation (3), and with the aid of DNS data the
performance of the three low-Re k-e models rated best in the review of Patel et

al. (1985) is examined. These are the models due to Launder and Sharma (1974

- hereafter referred to as LS), Lain and Bremhorst (1981 - hereafter referred to as
LB) and Chien (1982 - hereafter referred to as CH). The constants and functions
used in these three models are compiled in Table 1.

All of the models considered are of the form such that when f_, fl, f2 are set
to 1, and terms D and E are set to zero, the standard high-Re version of the k-e
model is recovered.

3. C_,-constant and f_-function

With C_ = 0.09 chosen as used in standard k-e models, the function f_, in the
eddy-viscosity relation (1) was determined from DNS data for developed channel

flow and boundary-layer flow at two Reynolds numbers each. The resulting f_,-
distributions are plotted versus y+ = U_y/u in Fig. 1. Away from the wall, the

f_-distribution gives an indication of the value of C_,, which should be constant

(f_ = 1.0 when C_, = 0.09). Indeed, Fig. la shows, for the higher Reynolds number

channel flow, that C_, is roughly .09 over more than three quarters of the channel

depth. It should be noted that this is in contrast to Rodi's (1975) evaluation of
Laufer's (1954) experimental pipe-flow data which show C_, to increase towards the

pipe axis where the ratio of production to dissipation of turbulence energy, P/e,

goes to zero. For the channel with ReT = 180, a higher C_,-value results in the

central part of the channel. In contrast, the C_-value in the boundary layer, not

too close to the wall, is approximately only .075. The behavior of C_ (or rather

C_,f_,) can be explained via the distributions of u'v'/k and P/e since (1) and (2)
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FIGURE 3. Distribution of the ratio of production to dissipation of turbulent

kinetic energy, P/e. (a) Channel flow at -- Re,. = 180, .... Re,. = 395. (b)

Boundary layer at -- Reo = 670, .... Reo = 1416.

can be combined to yield

f.c.= t , /P-e (5)

C_, = 0.09 (with f_ = 1) corresponds to P/e = 1 (local equilibrium) and the
often measured value of the structure parameter -u'v'/k = 0.3. Figs. 2 and 3

show respectively, again for channel and boundary-layer flows, the distributions of

the parameters -u-7-_v'/k and P/e determining C_,f_, according to relation (5). In
the low-Re channel, the ratio P/e has only a value of about 0.85 in the region

where -u-ff_vW/k_ .3, which explains the higher C_f_-value. In the high-Re channel,

PIe drops faster than -u'v'/k towards the channel center so that (u--_v_v_lk)Z/P/e ._
constant which explains the constant value of C_,f_, in the central portion of the

channel. In the boundary layer, -u-U-_v_/kapproaches 0.3 only where the ratio P/e is

C-S.2
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significantly larger than 1, which leads to the relatively low value of C_/_, _ 0.075
over larger parts of the boundary layer. More towards the edge of the boundary
layer, where Pie tends to zero, C_.f_, increases.

The foregoing has shown that the use of a constant value of C, = 0.09 can

generally be only a rough approximation. When this value is chosen and when/_,

is introduced to represent the damping of the eddy viscosity near the wall, then/_,

must take a value of I away from the wall, which of course cannot agree with all the
DNS data. For the near-waU region (9 + < 100) in channel flow, Fig. 4 compares the

/,-functions due to LS, LB and CH with the DNS data for both Reynolds numbers,

and Fig. 5 provides a similar comparison for the higher Reynolds number boundary-

layer flow. Very near the wall, two sets of DNS data have to be distinguished: one

using e itself in the eddy-viscosity relation (1) which causes .f_ to behave as 1/9
since e is finite at the wall; the other set of data is based on the use of the modified

dissipation rate i which varies as 92 very near the wall so that/_, goes to zero at

the wall as 9. The LS and CH models use i _ e so that their .f_-functions should
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FIGURE 5. Comparison of various f_-model functions with DNS data for boundary

layer (Res = 1416). e-.-o DNS, -- new correlation, .... LS, ........ LB.

and do go to zero at the wall. a However, the CH function can be seen to rise and

approach the value of unity far too slowly, while the LS function initially rises far

too quickly but then also has a rather slow approach to the value of 1. That the

f_-function due to LS never rises beyond 0.8 for the low-Re channel case is due to

the fact that the argument of the f_,-function, Ret, rises to a maximum at V + _ 20

and then falls again. The model of LB uses e and hence fs, should increase very

close to the wall; but this f_,-function also goes to zero at the wail, which causes vt

to behave as y 4 instead of 9 s. The following increase in fs, is simulated fairly well

by the LB function, but then it approaches unity somewhat too slowly. The fairly

good agreement for the boundary layer (Fig. 5) is somewhat misleading because
the far-wall value of the data is lower than 1. There seems to be some influence

of the Reynolds number on the f_-distribution in an f_ vs. y+-plot, but in view
of the differences between various wall-bounded flows, the inclusion of such effects

in a single model is not warranted. Hence, a y+-dependent f_-function based on

the data for the high-Re channel flow appears as a reasonable compromise, and by

curve-fitting, the following f_-function has been determined:

(1 - exp(-O.O48y +))2

= (1 + 6.exp(-O.OSSy+))
(6)

This relation, which is also included in Figs. 4 and 5, is only suitable for attached

flows, while in separated flows the argument y+ should be replaced by R% =

kl/2y/u.

Durbin (1990) suggested to use the normal fluctuations (_-_)a/2 as velocity scale

in the eddy-viscosity relation (1) instead of k 1/2 and argued that a damping function

would not be needed in this case. His eddy-viscosity relation reads:

u, = C_v'--2T (7)

1 The ft,-function due to CH had to be presented on a different graph because CH uses a different

D and hence a different definition of _, resulting also in different DNS data curves.
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Re_ = 395;

with the time scale T determined from

)
It has been shown before by Launder (1986) that the near-wall damping expressed

through the function f_, in (1) is not so much due to viscous effects but mainly due

to the damping of the normal fluctuations v' by the pressure-reflection mechanism

and that f_, therefore correlates very well with va/k. Hence it is interesting to test

Durbin's model proposal (7) with the aid of DNS data. Fig. 6 shows C, in relation
(7) determined from the channel-flow data at two Reynolds numbers. It can be

seen that C_, is indeed fairly constant down to ,/+ _ 10. The C_-value depends
somewhat on the Reynolds number as was noted already above in the context of

C_, appearing in (1). Very close to the wall, where the time scale T according to

(8) adopts a finite value, C, behaves as 1/y. The use of a constant Cu leads to
vt oc y4 and the correct vt-distribution near the wall (vt oc y3) can only be obtained

by introduction of a damping function in this region.

4. _-budget

The exact equation for e(= uu_,ju_j) derived from the Navier-Stokes equations
can be written in tensor form as

D

/)--i_= P,'+P,_ +P,_ +Pt +T, + H, + D,- Z (9)
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e-budget for channel flow Re_ = 395. _ P_; _ P_; ........ P_;

T,; .... II,; ----- D_; _ T; x x x _ sum of all terms.

where the individual terms on the right-hand side are defined and identified as

! I .

P_ :-u2ugjukjS, h Mixed production

Production by mean velocity

gradient
Gradient production

p_ =-v2u_,ku_,,,_u_,,_ Turbulent production

# I I

n, = (p',,.

D_ =i/e,kk

Turbulent transport

Pressure transport

Viscous diffusion

T = v22u_,h,,_u_,_,,_ Dissipation

and S_j = (U_j + Uj,_)/2 is the mean strain rate. For developed channel flow, the
left-hand side is zero so that the terms on the right-hand side should balance each

other. Mansour et al. (1988) have calculated the e-budget from the DNS data for
the low-Re channel flow. The e-budget evaluated from the data for the channel with

Re¢ -- 395 is given in Fig. 7. All terms have been made dimensionless with U_/v 2.

The imbalance in the budget (crosses) is also given; this is a measure of the errors in

the budget terms due to discretization and limited sample size. As can be seen, the
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imbalance is fairly small except very close to the wall (y+ < 8) so that the c-budget
determined from the DNS data can be considered accurate for 9 + > 8. As was to be

expected from the order of magnitude analysis of Tennekes and Lumley (1972), the
turbulent production rate P_ due to vortex stretching and the viscous destruction

T dominate the balance equation in the high-Reynolds-number region away from

the wall. However, near the wall, the production terms p a and P_ become equally
important, and at the wall itself viscous destruction is balanced by viscous diffusion

and pressure transport. The smaller terms P_, T_ and H_ are shown in Fig. 8 on an
expanded scale. The imbalance can be seen to be small even compared with these

small terms for y+ > 8, and the pressure diffusion H_ can be seen to be negligible

everywhere. On the other hand, the relatively small production term/93 is of the
same order of magnitude as the turbulent diffusion To

The terms P_ and T increase with increasing Reynolds number, but their dif-

ference remains independent of Reynolds number (once this is sufficiently high);
the latter is true also for the rate of change and transport terms, of which in the

channel flow situation only the diffusion term is non-zero. According to Tennekes

and Lumley (1972), the terms P_ and P_ relative to the difference (P_ - T) are of
order l/Re 1/2. Fig. 9 shows the sum P,_ + p2 and the difference p4 _ T for chan-

nel flow at both Reynolds numbers investigated. With the non-dimensionalization

chosen, there is no noticeable Reynolds-number infuence on either group of terms

away from the wall. Near the wall, both groups go up somewhat with the Reynolds
number. Also, it is dear that the destruction term T adjusts to the increase of
_-production due to P_ and P_ near the wall and in fact tends to overreact some-

what. The sum of all source and sink terms (i.e. p a + p_ + p3 +/:,4 _ T) is also
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included in Fig. 9. This sum, which is little influenced by the Reynolds number, is

very small compared with the actual terms in the e-equation. It is this sum which,

in general, balances the rate of change, convective and diffusive transport terms in
the e-equation and therefore governs the magnitude of e. Hence it is only this sum

that really matters and has to be modelled. Because of the small magnitude of the
net source compared with the original terms in the e-equation, the usefulness of the

exact e-equation has sometimes been considered doubtful. However, even though
this source is small it is still finite and balances the rate of change and transport

of e. At high Reynolds numbers, where an inertial subrange exists, the source/sink

terms are given by the integral over the low-wave number part of the spectrum
of the spectral transfer function multiplied by the wave number squared (see e.g.

Rodi, 1971). This shows that e is governed by the larger-scale turbulent motions

which are independent of Reynolds number.

5. Scaling arguments

Tennekes and Lumley (1972) made an order of magnitude analysis of the terms

in the vorticity-fluctuation equation. The order of magnitude was expressed in

terms of the velocity scale u, the macro-length-scale l and the Taylor micro-scale )_.

They found that the relative magnitude of the individual terms and hence also the

importance of the production terms P_ and P_ depends on the Reynolds number

Ret = ul/v. In a study of homogeneous shear flow, Bardina (1988) argued that the

Reynolds number is not the only parameter determining the relative importance of

the P_ and P_ production terms but that the mean shear number S,_ = Sk/e plays
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also a role (S is the mean shear rate). His conclusions are of interest here, but his

derivation seems not to be quite correct and also does not allow direct insight into
the Re-dependence of the terms in the e-equation. Hence, scaling arguments are
elaborated here once more.

Because of the close relation between the dissipation rate e and the fluctuating

vorticity w_w_ (with e = vw_a,_ in homogeneous flows) the scaling arguments of
Tennekes and Lumley can be applied directly to the e-equation. When the strain

rate in the terms P_ and P_ is not expressed as u/l but is retained as a strain-rate

parameter S (which in channel flow is equal to the shear rate OU/_) and with
e oc vu2/)_ 2 oc uS/l and the velocity scale u = k 1/2, there follows the order of

magnitude of the various terms as

,10 
P_, T = 0 _-. (11)

D (k 2)P:-T, T,=O (12)

n 1/2 n 1/2
Since I/A oc _e_ oc ne t , the terms P_ and P_ decrease as Ret increases while

the terms P_ and T increase. The difference of the latter terms, p4 _ T, and also

the rate of change and transport terms are independent of Reynolds number, as was

mentioned already. The magnitude of the production terms P_ and P_ relative to

the main terms in the model e-equation (difference P_ - T and transport terms)
can now be established as:

P: - T e ",- _/2 (13)
_l-_e t

The relative order of magnitude of P_ and P_ is therefore determined by the pa-
rameter

Sk 1 S

R- ,, (14)
e ltet

which indeed involves the parameter S, = Sk/e. Relation (14) shows that the
parameter R is the ratio of the time scale of the dissipative motion to the time

scale of the mean strain field. Bardina (1988) also arrived at this parameter, but

his derivation concerns the ratio of order of magnitudes of terms P_ and P_ to
P_ and T, while here it represents the magnitude relative to the difference of the

latter terms. The scaling arguments show that the production terms P_ and P_
are important when the parameter R > 1. Bardina (1988) examined two sets of
homogeneous shear-flow data obtained by direct numerical simulations. For low

shear cases with typically R < .3 the terms P_ and P_ were found small compared



Low Reynolds number k-_ modeling 97

3I
2

1

' ' ' 3"0 '0 10 20 40

y+

!

50 60

FIGURE 10. Distribution of parameters R and Rp in channel flow at Re. : 395.

R; .... Rp.

with P_ while for the case with high shear (and low Reynolds number) characterized
by R = 6 - 15, the terms P_ and P_ were found to be larger than P_.

The distribution of the parameter R in the channel flow with Re, = 395 is shown

in Fig. 10. It can be seen that in the bulk of the channel flow the parameter is
substantially below 1 (_ .25). In the near-wall region, where the terms P_ and

P_ become important, the parameter R increases strongly and reaches a maximum
value of 2.4.

6. Modeling the terms in the e-equation

In order to turn the exact e-equation into an equation that can be used in a

turbulence model, the source and sink terms as well as the turbulent diffusion term
need to be modelled. As was mentioned already, the sum of the source and sink

terms is much smaller than the actual terms but it is still finite and in channel flow

it is balanced by the equally small diffusion term. Models for the source and sink
terms are considered first, and the starting point is the generally used basic model

for high Reynolds number (or low R) situations where only P_ - T is left. This
difference is modelled as (see e.g. Launder et al., 1975):

e2

p: _ T = (cdP _ C,2) _- (15)

where P is the production of turbulent energy, that is the energy input into the
low-wave-number part of the spectrum. The model relation (15) is compared in

Fig. 11 with P_ + P_ + P_ - T and in Fig. 14 with the sum of all source and sink

terms (C,2 is multiplied by the damping function f2 according to Table 1, but f2
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FIGURE 11. New model for source/sink terms P_ + P_ + P_ - T compared with
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x × × sum of all terms.

is effective only for y+ < 5). Depending somewhat on the constants Cd and C_2
used, the basic model can be seen to simulate fairly well the sum of source and sink

terms away from the wall, where P:, P: and P: are unimportant. The question is

now how to bring in the influence of the production terms P:, P_ and P_ and the

consequential increase in the destruction term T. The terms P: and P: involving
the mean strain rate (first derivatives of velocities) are treated separately from the
term P: involving second derivatives.

6.1 Modelin 9 the effect of P_ and P:.

One possibility would be to add modelled terms of P) and P_. P_ can be ex-

pressed as -_ijUi,j, where eij is the dissipation rate of the Reynolds-stress compo-

nent u_u_; this term is therefore closely related to _2/k x P/_ and hence effectively
increases the value of the coefficient C_1 in (15), depending on P/_. With such

modeling of P), and similar one for P_, the sink term would have to be cranked up
drastically in order to account for the adjustment of T due to the extra production
by P_ and P_. As an alternative, the suggestion is therefore made here to model the

influence of the combined effect of P_ and P_ and T, which is to increase somewhat
the sink term in the _-equation. First the time-scale ratio R seemed to be a suitable

parameter as it governs the relative importance of the terms P_ and P_, but it was

found not to correlate too well. The close relation of P) to the ratio of production

to dissipation, P/_, suggests that this ratio is an important parameter and was

therefore taken to replace the strain-rate parameter kS/_ in (14). Of course the

influence of the Reynolds number Ret must be retained. The resulting parameter
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is p/, P/k (16)
Rp- .., 112 .3(_/vp/2

._l_e t

which is also a time-scale ratio, namely the ratio of the time scale of the dissipating

motion to the time scale P/k involving the production of turbulence. The variation

of the parameter Rp in channel flow is shown in Fig. 10.
The combined effect of P_, P_ and the increase in T is accounted for in the new

model by multiplying the coefficient C,z in the sink term of (15) by the following

function:
f3 = exp(2R_) (17)

This was obtained by fitting the exponential function to the DNS data of Fig. 11.

The effect of this function can be seen in Fig. 11; it is restricted to the near-wall

region of y+ < 30. The new model simulates quite well the distribution of the
source and sink terms P_ + P_ + P_ - T down to V+ _ 8, below which the DNS

results are not very reliable anyway.

6._ Bardina's model.

Bardina (1988) suggested to account for the influence of high shear characterized

by high values of the parameter R by adding an extra term to the _-equation which
involves the mean rotation fL This model suggestion is based on his previous work

on turbulence under the influence of rotation (Bardina et al., 1983). The extra term

(is _P + Ca2 (18)
- Cm e k
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In his study on homogeneous shear layers, Bardina (1988) found that with this

extra term (with constants C_1 = 0.015 and Cn2 = 0.15) the sum of the source

and sink terms (pa + p_ + p_ _ T) are modelled quite well also for the high shear
case; without the extra term, only the low-shear situation was simulated well. It

should be added here that the high-shear case was at a rather low Reynolds number.

Bardina's model, with his constants, was tried on the channel flow, and the results

are shown in Fig. 12. The model can be seen to have the correct trend, namely to
reduce the sum of source and sink terms in the e-equation near the wall, but the

reduction is somewhat excessive. Hence there appears to be too much sensitivity to

the mean rotation, which in the present case is the velocity gradient U,_. Perhaps

this oversensitivity could be remedied by multiplying the extra term (18), which
does not include any Reynolds-number dependence, by a suitable function of the
turbulent Reynolds number Ret.

6.5 Modelin 9 of P_.

The production term P: involving second derivatives of the mean velocity is small

compared with the other source and sink terms, but it is comparable with their

sum and also with the turbulent diffusion term (see Fig. 8). Hence it is important

to represent realistically also this term in a model. Hanjali_ and Launder (1976)
used a generalized gradient approximation for the fluctuating velocity gradients

u_j appeasing in the turbulence correlation in the P: term and expressed these
gradients in terms of second derivatives of the mean velocity. They arrived at a
model expression which reads for the special case of channel flow:

v-_k
P_ = C_2v-- (U, uy)2 (19)

With v '_ replaced by k and vt cx kS�e, there results the model used by LS:

P: = 2v t (u,,,) (20)

The P_-distribution resulting from this model is compared in Fig. 13 with the
DNS data. The model can be seen to have two problems: One is that the level of

P_ is significantly overpredicted; this could be fixed by using a different constant.

The other more fundamental problem is that the LS model predicts P_ to be always
positive while the DNS data show that P_ goes negative near the wall. It can be

shown from a series expansion of the fluctuating velocities u' and v' as given in

Mansour et al. (1988) that the correlation v'u',y, which is the only contribution to

P_ in channel flow, should behave as (u'v'),_ near the wall, i.e. as y2, and should
be negative. This confirms the behavior resulting from the DNS data.

Because of the fundamental problems with the LS model for P,_, an improved
! I

model was developed. To this end, an exact equation for the correlation ukui, j ap-
pearing in the P,S-definition was derived by manipulating the Navier-Stokes equa-
tions (see Appendix). For modeling purposes, it was then assumed that the corre-

lation is related to the source terms in the exact equation involving mean velocity
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= 395).

derivatives. For channel flow only the correlation vwu_ is of interest, and the main_Y

source terms in the equation for this correlation are

1-_ _
-_U,_ - _v ,_u,_ (21)

Multiplying these terms by a time scale k/i for dimensional reasons and assuming
v'-'-ioc k and k2/i oc v_ in the context of a k-e eddy-viscosity model, and allowing for

different multiplying constants for each of the terms in (21), the following model is

obtained for shear-layer flows:

p_ _2_vwu,,_U,. s 2 (22)

The first term can be seen to be the model of LS which is always positive. The second

term is negative near the wall as desired and turns positive further away from the
wall. This term also has the correct near-wall behavior, namely it approaches the

wall as y_. Adjusting the constants C_ and C_ to best fit the DNS data (C_ = 0.5,

C_ -- 0.006) there foUows the curve given in Fig. 13. The fit can be seen to be very

good.

6._ Model performance for Jam of all _oueee/Jink terms.

The model for P_ is now put together with the previously discussed model for
the other source and sink terms, including the Rp-function (17). The performance

of the resulting model for the sum of all source and sink terms is shown in Fig. 14a.
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The agreement between the model prediction and the DNS data is good down to
y+ _ 8, below which the DNS data are not so reliable anyway.

It is of interest to see how this performance compares with that of the three

selected existing models CH, LS and LB. Hence, in Figs. 14b - d the models for
the sum of all source and sink terms in the _-equations due to CH, LS and LB are

compared with the DNS data. For y+ _> 40, all models behave basically the same,
because here the extra terms E and functions fl and f2 are not effective. In the

range 20 _< y+ < 40, the CH model is superior because it uses different constants

C¢1 and C¢2 than the other models (see Table 1), which seem to be more suitable

in channel flow. However, these constants may not be so suitable for other flows,
e.g. free shear layers, for which the constants C_1 and C,2 used in the other models

were optimized. Even below y+ = 20, the CH model is quite reasonable, but it is

not as accurate as the new model, for which results are shown in Fig. 14a. The
E-term in the CH model is effective only below y+ _ 5 which shows that the basic

model of equation (15) without an extra E-term or fl-function is quite reasonable,
especially when suitable C,a and C,2 constants are chosen. Fig. 14c shows that the
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LS model predicts far too high values of the source/sink terms near the wall which
is clue to the E-term in their model e-equation representing the P_-production (see

also Fig. 13). Overall, the model behavior is better without this term. Similarly,

the fl-function in the LB model which increases the production of e has the wrong

effect because fl assumes very large values near the wall. Again, the model behavior

is better without this function.

6.5 Diffusion model.

FinalLy, the diffusion model generally used in the e-equation is tested against the

DNS data in Fig. 15. In the channel flow considered, the diffusion model reads

\ o'+ l ,y

and the adjustable constant _+ is normally taken as 1.3. Fig. 15 shows that this
model simulates the distribution of the diffusion term fairly well, even though the

accuracy is marginal near the wall.

7. Conclusions

From the evaluation of DNS data for channel and boundary-layer flow it was found

that away from the wall the coefficient C_, depends both on the type of flow and on

the Reynolds number and varies in the bulk of the flows in the range 0.07 to 0.12.

Considering only regions where the structure parameter u+v+/l¢ is approximately

constant, there is a clear dependence of C_ on P/e as given by relation (5). A fixed

value of C_ = 0.09 is therefore not very accurate for all situations and a damping
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function f_, designed to recover this value away from the wall cannot be in good
agreement with all DNS data examined. Nevertheless, some general conclusions

can be drawn on existing model functions. The f_-function of Chien (CH) rises
considerably too slowly, the function due to Launder and Sharma (LS) increases far

too fast with distance from the wall, and the function due to Lava and Bremhorst

(LB) performs best but also approaches unity too slowly. A new function of the

dimensionless wall distance y+ is proposed by fitting the DNS data for the higher-

Re channel flow. A damping function was found unnecessary except very close to
the wall (y+ < 10) when (_-)1/2 is used as velocity scale instead of k 1/2 in the

eddy-viscosity relation, as suggested by Durbin (1990).
The e-budget was determined from Kim's (1990) data for channel flow at Re,. =

395. This was found reliable down to a wall distance of y+ _ 8, as the calculated im-

balance term is very small for y+ > 8. As expected, the main terms in the e-budget

are the vortex-stretching-production term P_ and the viscous destruction term T,
but near the wall the production terms P_ and P_ involving the mean strain rate

are of similar magnitude. These production terms were found to cause the viscous
destruction term to increase near the wall so that the sum of all source and sink

terms is small compared with the main individual source and sink terms over the
whole channel depth. The turbnlent diffusion and the P_ term involving second

derivatives of the mean velocity are of the same small magnitude. Through scal-

ing considerations it was shown that the difference of the main source/sink terms,

P_ - T, and the transport terms (here only turbulent diffusion) are independent
of Reynolds number and also that the ratio of P_ and P_ to these terms is given

by a parameter R involving the strain rate and the Reynolds number Ret. This

parameter represents the ratio of the time scale of the dissipating motion to the
time scale of the mean strain field.

A new model was proposed and tested against the DNS channel data which

simulates the net effect of the production terms P_ and P_ and the consequential

increase in the destruction term T. In this new model, the sink term in the e-

equation is increased slightly near the wall through a parameter Rp involving the
ratio of production to dissipation, P/e, and the turbulent Reynolds number Ret. A

new model for the source term P_ was also derived, based on the production terms

in the exact equation for the turbulence correlation appearing in P_. Altogether,
the new models simulate the sum of all source and sink terms in the channel flow

very well down to y+ _ 8. Judging from the comparison with the DNS data, the

new model is better than the existing models investigated. The CH model is not as

accurate near the wall, but it is still quite reasonable, while the LS and LB models

produce too large source terms near the wall. The new model proposals comprising

a new f_,-function and new suggestions for the source/sink terms in the e-equation
should now be tested in actual flow calculations.

The authors are grateful to Dr. J. Kim for providing the unpublished direct

simulation data for the channd flow at Re,. = 395. The second author (NNM) likes

to acknowledge valuable discussions with Dr. A. Wray. The first author (WR) likes

to acknowledge the generous support of the Center for Turbulence Research.
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Appendix. Modeling the u_ulj-correlation

An exact equation for the u_u_j-correlation appearing in the P_-term can be

derived by differentiating the momentum equation for the fluctuating component

u_ with respect to z j, multiplying this equation by u_ and averaging. The result is
as follows:

U I Ul _ I I w I e Ih _,j;,t - uid%,t + Ui(%u_d),: - Ulul,j%,l

- ' 'u'u" 1 , ,+ uu,hu_,._+u£u_,,u,,j + u'kuT,,,,i - u£u},jV,,,, uk_ _ O.,J =-_P._:_
(A.1)

It is now assumed that the terms involving gradients of the mean velocity act to

' ' When put to the right-hand side of the equation,produce the correlation u_ui, j.
these terms read:

' ' • u_u_U,j I u_u_jU, j (A.2)--ukuijUl, $ --

For developed channel flow, the only correlation in P_ is v'u'y, and the velocity

gradient production terms for this correlation are

-v'u'ffiU,_ - v-_U,y_ - v'v',_U,_ (A.3)

The correlation appearing in the first term can be written as:

v'u' = (u'v'),. - u'v-_,. (A.4)
tZ

In developed channel flow, (u-_-/v_),,is zero and u'v'., is neglected to first approxi-

mation. The correlation vtv _ can be written as 1/2(v%-i),y. The velocity-gradient
tY

production terms of the correlation v'u',y therefore are approximately:

_-_U,,_- _(_-_),yV,y (A.5)
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One-equation near-wall turbulence'modehng
with the aid of direct simulation data

By W. Rodi 1 AND N. N. Mansour _

The length scales appearing in the relations for the eddy viscosity and dissipa-

tion rate in one-equation models were evaluated from direct numerical simulation

data for developed channel and boundary-layer flow at two Reynolds numbers each.

To prepare the ground for the evaluation, the distribution of the most relevant
mean-flow and turbulence quantities is presented and discussed, also with respect to

Reynolds-number influence and to differences between channel and boundary-layer
flow. An alternative model is also examined in which (_-_)1/2 is used as velocity

scale instead of k 1/2. With this velocity scale, the length scales now appearing in

the model follow very closely a linear relationship near the wall so that no damping

is necessary. For the determination of v_-'_ in the context of a one-equation model, a

correlation is provided between v'--_/k and u'v'/k.

1. Introduction

One-equation eddy-viscosity models have recently regained popularity as compo-

nents of two-layer turbulence models (see e.g. Rodi, 1991). In these, one-equation

models are used only near walls in the viscosity-affected region, say up to wall dis-

tances where the ratio of eddy viscosity to molecular viscosity takes values of 20 to

40, which corresponds to wall distances of up to y+ _ 80 in boundary-layer flow.

Outside this near-wall region, other, more general models are employed such as the

two-equation k-e model or Reynolds-stress-equation models.

In existing one-equation models, the local state of the turbulence is characterized

by the velocity scale k 1/_ and the length scale I. The turbulent kinetic energy

/¢ is calculated from a transport equation, while the /-distribution is prescribed

empirically. In attached near-wall flows, the only Reynolds stress of importance in

the momentum equations is the shear stress -u_v--7 , which is determined from the

eddy-viscosity relation

-_'v--_ = v_U,y (1)

In one-equation models, the eddy viscosity is calculated from

_,_= C,,tl/_ll, (2)

1 University of Karlsruhe, F. R. Germany

2 NASA Ames Research Center
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and the distribution of k from the following transport equation for k:

The dissipation rate _ appearing in this equation is determined from

e = k,a/_/l, (4)

When the coefficient C_ in (2) is chosen as the square of the structure parameter

u'v'/k under local equilibrium conditions, the length scales l_, and l, are the same

in the log-law region, but they may differ very close to the wall. They are usually

prescribed empirically by formulae of the following type

l_ = C_y(1 - exp(-y'/A;)) (5)

l, = C,y(1 - exp(-y*/A_)) (6)

where

v* = kll vl (7)

and A_ and A* are empirical constants. Hence, the length scales basically increase

linearly with distance from the wall at the same rate, but their magnitude is reduced

near the wall by exponential damping functions, which are similar to the van Driest

damping function in the mixing-length model and are different for l_, and l,. This is

basically the model due to Wolfshtein (1969), while Norris and Reynolds (1975) used

a function (1 + C,V*) -1 to damp the dissipation scale 1, near the wall. Of course,

the length scales grow linearly only near the wall; altogether a raxnp function is

assumed with a uniform/-distribution in the outer part of the flow. However, in

this paper we are concerned only with the near-wall region. The argument in the

damping functions is taken as V ° = kl/2V/v and not V + = U_v/v because the

functions should also work for separated flows where UT can go to zero.

The length-scale prescriptions (5) and (6) are based on compatibility with the

universal logarithmic velocity distribution and lean heavily on experience with the

mixing-length distribution near the wall, i.e. on the van Driest damping law. So

far, the validity of the prescriptions could not be checked directly with the aid of

data but only indirectly through their use in flow calculations. Direct numerical

simulation (DNS) data are now available to test the length-scale relations directly

and to form the basis for developing improved prescriptions if necessary. To this end,

l_- and/,-distributions are calculated in this paper from DNS data for developed

channel (Kim et al., 1987 and Kim, 1990) and boundary-layer (Spalart, 1988) flows

at two Reynolds numbers each, and these data are compared with the existing

empirical relations. The influence of the Reynolds number is thereby also examined.

Alternative modeling with the normal fluctuations (_-)1/2 as velocity scale instead

of k 1/2 is also investigated, a__nd -v-_/k is correlated with u'v_/k so that no extra

equation need be solved for v_2 and the one-equation-model character is retained.
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FIGURE 1. Velocity profiles in wall coordinates.
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2. Basic quantities needed for model evaluation

The ground for the model evaluation needs to be prepared first by providing dis-
tributions of basic quantities in channel flow and boundary layers as computed from

the DNS data. Here, the influence of the Reynolds number and of the flow situation

(channel flow versus boundary layer) is examined with the quantities plotted in wall
coordinates, i.e. they are made dimensionless with U¢ and v. As components of

two-layer models, one-equation models are mostly used for globally high-Reynolds-
number situations and hence the model relations should correspond closely to such

situations; the tuning of the model to data stemming from rather low Reynolds-
number flows is therefore not desirable. Hence, it is important to examine how

closely the DNS data obtained for the highest Reynolds numbers correspond to

experimental data achieved at high Reynolds numbers.

All quantities to be presented in the following are made dimensionless with the
friction velocity Ur and with v, and they are plotted against y+ = U¢y/v. First,

the velocity distribution is given in the usual semi-log plot in Fig. 1. For channel

flow (Fig. la), there appears to be a reasonably well established log law for both

Reynolds numbers, but for the lower Reynolds number (Rc¢ = 180) the constant
C in the log law is above the standard value 5, while for Re¢ = 395 the veloc-

ity distribution follows the standard log law over a significant part of the channel
half-width. At fairly low Reynolds numbers, the increase in the log-law constant

C with decreasing Reynolds number is a well known phenomenon (see e.g. Laun-

der, 1986). For the boundary layer at the lower Reynolds number (Reo = 667),

the velocity distribution follows the log law in a small region only, while at the

higher Reynolds number (Reo = 1416) this region is fairly extensive (up to nearly

y+ _ 100). For both channel and boundary-layer flows, the yon Kgrrnkn constant
derived from the data is _ = 0.41. Hence, in the higher-Reynolds-number cases,

the velocity distribution corresponds to the observed distribution at much higher

Reynolds numbers over a significant portion of the flow. The deviation from the log
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law can be seen more clearly in Fig. 2 where the velocity gradient U + is plotted.
,10+

According to the log law this gradient should follow the curve 1/_y +, Fig. 2 shows

that for both higher-Reynolds-number flows (channel flow and boundary layer) the

velocity gradient starts to deviate from this curve at y+ _ 30.

Fig. 3 shows for channel flow the distribution of the RMS values of the fluc-

tuating velocity components u, v and w compared with measurements of various

experiments at high Reynolds numbers, as compiled by Myong and Kasagi (1988).

The measurements show considerable scatter, and extreme data points should not

be considered trustworthy. The DNS data exhibit a surprising dependence on the

Reynolds number even close to the wall, particularly so for the component w. How-

ever, there is a clear trend with increasing Reynolds number towards the mean of

the experimental data, and the DNS data for Re,. = 395 are already a fairly good

representation of the high-Reynolds-number experimental data. Hence it may be

concluded that the higher-Re channel flow data correspond closely to high-Re chan-

nel flow for which the quantities considered are independent of Reynolds number.

In Fig. 4, the corresponding DNS data for the boundary layer are presented at two

Reynolds numbers. Here a similar Re-dependence is found, and it is interesting to

note that, except very close to the wall, the fluctuating velocities in the boundary

layer are somewhat higher than in the channel flow. This may be due partly to

the differences in the flow situation with the shear stress -u'v _ falling more quickly

with distance from the wall in the channel flow than in the boundary layer, but to

some extent it is also due to the fact that the boundary-layer flow at Res = 1416

represents a higher Reynolds-number case than the channel flow at Re¢ = 395.

This can be inferred from the higher y+- and vt/v-values in the boundary layer (see

Figs. 1 and 9).

The ratios u'2/k, v'_/k and w'2/k needed in section 4 are shown for both flows

in Fig. 5. Up to y+ _ 100, there is generally little influence of the Reynolds

number on these ratios, and there is also fairly good agreement between channel
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(a) Channel: -- Re_. = 180; .... Re_ = 395.

(b) Boundary layer: -- Reo = 670; .... Reo = 1416.

and boundary-layer flow. An exception is w '2/k, which has a larger dip near the wall

in the channel-flow case. For the higher-Reynolds-number cases, constant values are

a reasonable approximation to the data for y+ _> 80, with u'2/k _ 1, v'2/k _..41

and w_2/k _ 0.59. The distribution of the structure parameter -u'v_/k is given in

Fig. 6. For the channel flow, the range where this parameter assumes approximately

the standard value of 0.3 is much narrower than for the boundary layer. However,

in the higher Re case the value of 0.3 is reached in the boundary layer only at fairly

large y+-distances. The correlation coefficient -u'v_/(u '2 v'2) 1/2 plotted in Fig. 7

can be seen to be much more uniform over the width of the shear layers. Of course,

this coefficient drops to zero at the channel center, and it also decreases very close

to the wall, but overall a value of .42 is well supported by the DNS data.

The ratio of production to dissipation of turbulent kinetic energy, P/e, which
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plays an important role in modeling, is given in Fig. 8. In channel flow, a substantial

region with local equilibrium (Pie ._ 1) is present only in the higher-Reynolds
number case. For the boundary-layer situation, such a region is limited to y+ _ 80

- 100, while further away from the wall, production dominates dissipation and P/e

reaches a maximum of about 1.4.

Finally, in Fig. 9, the ratio of turbulent to molecular viscosity, v_+, is presented.
The level of this quantity reached is a good indicator of the influence of viscous

effects on the flow, that is whether the Reynolds number is high enough for these

effects to be unimportant. Clearly the low-Re channel flow does not satisfy this

criterion with v,+ reaching values of only about 15. The higher-Re boundary layer

reaches the highest levels of vt+, as was to be expected. In the log-law region with
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(a) Channel: Re_ = 180 -- DNS, ----- Eq. (11); Re_ = 395 .... DNS,

----- Eq. (11).

(b) Boundary layer: Res = 667, _ DNS, ---_ Eq. (11); Res = 1416

.... DNS,----- Eq. (11).

U + = 1/_y + there follows from (1):
,¥+

_,+= -_'_-_'_u+ (8)

Near the wall, v+ from the DNS data has the gradient _:, but it does not follow

exactly v + = _9 + but falls below this relation because this is based on -u'v---7+ = 1

while the actual shear stress is below the wall shear stress. Very near the wall, the

damping of the eddy viscosity is visible, which needs to be accounted for in any
turbulence model.
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3. One-equatlon models based on k a/2 as velocity scale

__. The non-dimensional length-scale l + defined by

l U, v+ (9)
+ = - C k+1/2

was determined from the DNS data and is presented in Fig. 10. When v+ in this

relation is determined from (8) based on the log law and when k + is assumed

proportional to the shear stress -u-_v _+ via

k+ _ (10)
C1/2

the following relationship for the length scale 1+ results:

(11)

In relation (10), ,_1/2 is the structure parameter, for which a standard value of .3
_s/ll+ is plotted whichhas been taken so that C_ = 0.09. In Fig. 10, actually ,_ ._

corresponds to the Prandtl mixing length usually assumed to be _y+ in the log-law

region. The distribution of l_+ according to (11) is also included in Fig. 10. As

this relation assumes the log law to hold and the structure parameter -u-'_v'/k to

have a value of 0.3, the DNS data agree fairly well with this distribution in regions

where these assumptions axe approximately valid. Further away from the wall, these

assumptions are not even approximately valid, so that there are considerable differ-
ences in the distributions, particularly so for the boundary layer. The differences

in the curves for the various Reynolds numbers can be much reduced when 1_/6

is plotted versus y/_, where 5 is the shear-layer thickness (channel half-width or

C_ l_/_ = t;_ l_/ne_ then is approximately 0.13 inboundary-layerthickness). 3/4 _3/4,+ ,n

the outer region of channel flow (y/6 > 0.4) and 0.095 for boundary layers in the

region .4 < y/l_ < .8. Equation (11) can be seen to approximate the l_,-distribution
reasonably well in the near-wall region, but not too close to the wall. There, l_

falls below the distribution (11) because of the near-wall damping of turbulent mo-

mentum transfer. A damping function h la van Driest is therefore required in this

region. Fig. 11 shows the distribution of the damping function/_ defined by

_3/,J t
_ "," "" (12)

_Y

as determined from the DNS data. /_ is plotted versus the dimensionless wall

distance y* defined in (7), which is generally used as argument in damping functions

(see equations (5) and (6)). /_ defined by (12) following from the data does not

quite reach a value of 1 as it does in models because l_, is always below the linear
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FIGURE 11. Distribution of damping function f_,.
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A_, = 50.5;----- Eq. (13).

(b) Boundary layer: -- Res = 667; .... Re# = 1416; -----

A; = 50.5;----- Eq. (13).

Eq. (5) with

Eq. (5) with

distribution _y (see Fig. 10). Perhaps it would be better to determine the damping
function with the right-hand side of (11) in the denominator.

Commonly used exponential damping functions, e.g. relation (5), approach 1

further away from the wall, but they are not very accurate in the region up to
1/+ _ 50. An exponential function with A_, = 50.5 is included in Fig. 11. The DNS
data are better approximated by the following power-law formula

y. ) 1.2/_--i- 1-T_ (13)

which forces f_, to become 1 at 9" = 120. This rdation simulates the near-wall

damping quite well but approaches unity somewhat too quickly.

Dissipation length 1+. The non-dimensional length scale l,+ used for determining
the dissipation rate which is defined by

k+3/2
l+= e+ (14)

is plotted in Fig. 12. When k + in this relation is eliminated with the aid of (10)
and e+ is determined from

e+ = p+ = -,,,_,*v++,, = (15)
gy+

assuming local equilibrium and the log law to hold, there results the following
relation for 1,+:

c_/'_+ = (--'_--_')'/_,,_+ (16)
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(a} Channel: Re_ = 180, -- DNS, --'-- Eq. (16); Re, = 395, .... DNS,
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(b) Boundary layer: Reo = 667, _ DNS, ----- Eq. (16); Re# = 1416,

.... DNS, ----- Eq. (16).

This is identical to relation (11) for the length scale I+ showing that, under the

assumptions involved in these relations, both length scales are the same. Not too

close to the wall, the behavior of It is similar to that of l_, but this similarity does
not extend to the channel center or the boundary-layer edge. Also, close to the wall

significant differences are obvious which depend strongly on the Reynolds number.

(this dependence does not disappear when 1,/6 is plotted versus 9/6). A sizable

region exists where le+ is larger than described by equation (16) or even larger than
the linear relation _y+. The maximum deviation occurs at 9 + _-, 15, where the

distribution of the dissipation rate e has a plateau (see Fig. 13). Here, existing

one-equation models using a linear/,-distribution modified by a damping function
according to (6) predict a peak in e as shown also in Fig. 13. This e-distribution

with a peak away from the wall was also deduced from experiments (Patel et al.,

1985), but measurements of e must be considered unreliable very near the wall.
As there is a considerable Reynolds-number influence on the/_-distribution, this

is difficult to prescribe with a simple model relation. An alternative possibility is to
introduce a model for e directly via relation (15). This is plotted in Fig. 13 together

with the e-distribution calculated from the DNS data. It is clear that very close to

the wall the behavior is very different as the right-hand side of (15) goes to zero at
the wall while e rises to a maximum value according to the data. Near the wall,

relation (15) corresponds much closer to a modified dissipation rate [ defined by:

2

,- (1,)

In low-Reynolds-number k-e models, _ is often used in the time scale k/e instead

of e in order to keep the time scale finite at the wall. Both _ and -u'v' _/_y+ go

to zero at the wall and both do so as y2 so that relation (15) simulates correctly
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the behavior of _ near the wall. Relation (15) is based on the assumption of local

equilibrium and on the validity of the logarithmic velocity distribution and can

be seen to be a reasonably good approximation to e in the y+-range 100 - 200.

However, in the case of the boundary layer deviations already increase at the larger

y+-values in this range as the velocity profile starts to deviate from the logarithmic

distribution (see Fig. 2). Closer to the wall, _ (which is different from e only for

y+ _ 12) is also quite well simulated by (15), particularly so the shape. The peak,

however, is predicted somewhat too low. In this region, the actual velocity gradient

is larger than 1/_y +, but dissipation is smaller than production (see Fig. 8). These

two influences compensate each other to a large extent, but not 100_ so that

is somewhat underpredicted. A pragmatic approach to the simulation of _ is to

multiply the right-hand side of relation (15) by a factor of about 1.2 which then

yields _-distributions which are approximately correct for all cases considered here.

4. One-equation model based on (_-)1/2 as velocity scale

Durhin (1990) suggested that, in near-wall shear layers, the normal fluctuations

(_-ff)1/2 may be a better velocity scale for characterizing the turbulent motion than

k 1/2 and that no damping functions may be needed when this velocity scale is used.

Hence, it is intriguing to examine whether this choice of velocity scale leads to

corresponding length scales which axe easier to prescribe empirically. Of course,
the question then also needs to be answered as to how v-_ can be related to other

known quantities in the context of a one-equation model.

Length-scale l_,__. When k 1/2 is replaced by (_7_)1/2 in the eddy-viscosity relation

(2), there follows:

: (18)

It should be noted that any constant that may occur has been absorbed in l_,,v. In

Fig. 14, the distribution of the dimensionless length scale l_+,_ as determined from
the DNS data is compared with the distribution from the following approximate
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formula:

v+ -u'v' +IcY+ (19)

l+,,=

This formula is again obtained by replacing the eddy viscosity by relation (7) based

on the log law. Further, it can be seen from Fig. 3 that _ is approximately 1,
and this value was inserted in relation (19) for the curve shown in Fig. 14. The

figure indicates that, for larger y+-values, the DNS data deviate more from the

approximation curve than in the case of l_, (see Fig. 10). However, close the wall

(y+ < 60) the data follow much closer the approximate relation, which is virtually
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linear in this region. Hence there is considerably less damping than in the case of

l_,. This is due to the fact that v'2/k decreases near the wall (see Fig. 5) and that

right at the wall 1_,,¢oc y while 11,_x y2. There appears to be some damping, but to
first approximation the data can be described by

l_,,, = C_,.y (20)

where the factor C_,_, is somewhat smaller than _. As can be seen from Fig. 15, the

linear distribution with C_,_ = 0.33 approximates the data fairly well up to y+ _ 60.

It may be also of interest that l_,,,,/6 = l+,_,/Re,, is approximately 0.12 in the outer
part of channel flow and 0.08 in boundary-layer regions with .4 < y/5 < .8.

Dissipation length l,,_. When (_-_)1/2 is used as velocity scale, the dissipation
relation corresponding to (4) reads:

(_-)1/2k
'- (21)

which is practically a relation between a velocity scale, a length scale and the time

scale k/e. The dimensionless length scale 1_ can be approximated as

k + ..-_+)_/_ = ___1 ,_,,+¢_-+_/2
= cY' " ' ' (22)

which again results from the elimination of k + with the aid of (10) and of _+ with the
t'7_ /21+aid of (15), involving local-equilibrium and log-law assumptions. In Fig. 16, ._, ._,¢

determined from the DNS data is plotted together with the line s!t + resulting from

(22) by assuming again that v"7_+ has a value of 1. Fig. 16 shows that this linear

relation approximates the channel flow data near the wall very well, while the data
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indicate a somewhat larger slope for the boundary layer. This is due to the fact that

in the boundary layer v w2 is somewhat larger than 1 in the region considered (see

Fig. 3). Further, the lower-Reynolds-number cases follow the linear distribution

only up to rather small y+-values. In the bulk of the flow at larger y+ distances,
constant values of l + are approached. When l_, is made dimensionless with 5,

1/2Ct, I_,_/6 _ 0.14 for both channel and boundary layer flows. Near the wall, the

following linear distribution can be recommended:

l,., = Ct,(y (23)

with Cl,, _ 1.43 as an average value. This linear relation is a reasonable approxi-

mation up to y/_ ,_ 0.2.
Determination of v'---_. When (_-)1/2 is used as velocity scale in the turbulence

model, the distribution of v"--_needs to be determined. The most direct way to obt.ain

vw-Twould be to solve a transport equation for v'--T and this is what Dnrbin (1990)

proposed when he introduced (_-)1/2 as velocity scale. However, the pressure-
strain term in the v'--2-equation has then to be modeled and, especially for near-wall

regions, this is a difficult and an unresolved problem. Further, for a simple near-wall

model for use in practical calculations, it is desirable to keep the model at the one-

equation level and not to add further equations. Hence, the suggestion of Hanj__._Mi_

and Launder (1976) is followed here to introduce a simple relation between v'2/k

and u-7_v'/k. Hanjali_ and Launder based their simple relation on two assumptions.

First, they assumed that the shear-stress correlation coefficient is constant, i.e.

--lgw_ t

= constant (24)

(uw2¢2)1/2

T_hey further assumed that the kinetic energy is related to the components u '2 and

v a by
k = a(u'_ + ¢_) (25)

where a is a constant, which also implies that the ratio w_'--T/k = constant. The first

assumption is well supported by the DNS data, as can be seen from Fig. 7. Fig. 5
shows that the second assumption is also well supported away from the wall while

near the wall w'----_/k has a dip which however recovers at the wall itself. This dip is

stronger in the channel flow than in the boundary layer. Combining relations (24)

and (25) yields:

which is a quadratic equation for v'-'-_-/k. I'Ianjali_ and Launder (1976) linearized this

equation by omitting the second term on the right-hand side and compensating for

this by suitably choosing the coefficient in front of the first term. Their final model

relation reads:

T = 4 (27)
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This relation is compared in Fig. 17 with the DNS data and shows that altogether

it is not a bad fit but underpredicts__y_v'2/k as u'v'/k approaches 0.3. When the

quadratic equation (26) is solved for v'2/k, there results:

-- 2
v '2 I

(28)

With a : 0.7 and c = 0.42 as a consensus of the data (see Figs. 5 and 7) the resulting

curve is also included in Fig. 17. This provides a better fit at the larger u--_C/k-

values, but the relation still underpredicts v'2/k in the range .2 < [u'v_l/k < .25.

A better representation over the entire range of urv_/k can be obtained by the

following fit to the data:

-_- = 1.13 + 14.67 (29)

This curve is also included in Fig. 17 and can be seen to represent the relation

between v_2/k and u_v_/k with sufficient accuracy for use in a one-equation model

restricted to the near-wall region.

5. Conclusions

The direct simulation data have shown that, for the Reynolds number investi-

gated, there is still considerable influence of the Reynolds number on the quantities

plotted in wall coordinates. However, for the higher Reynolds numbers simulated,

the quantities are already close to those observed in experiments at much higher

Reynolds numbers. On the other hand, for both channel and boundary layer the
lower-Reynolds-number cases are subject to considerable viscous effects. It was also

found that, except very close to the wall, the normal stresses are somewhat higher in

boundary-layer than in channel flow because of the different shear-stress behavior.
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The length scale I_ in the eddy-viscosity relation of existing one-equation models
follows a near-linear behavior near the wall, but very close to the wall it falls below

this distribution and requires the introduction of a damping function similar to that

for the mixing-length distribution. Damping functions were evaluated with the aid

of the DNS data, and the existing ones were found not to be accurate. Based on

the data, a new damping function was proposed. The distribution of the length

scale l_ in the dissipation relation shows a pronounced hump at y+ _ 15 and lies

considerably above the linear distribution near the wall. This behavior is not easy

to describe in a simple relation, but the distribution of the modified dissipation rate

itself can be fairly accurately modeled in terms of shear stress and wall distance.

When the normal fluctuations (_-_)1/2 are introduced as velocity scale instead of

k 1/2, the corresponding length scales are better behaved, i.e. the dissipation length

1_,_ does not have a hump and the length l_,e is subject to much less damping. Near

the wall, both length scales can be approximated quite well by linear relations and

no damping functions are needed. It was found that v'2/k and u'v'/k correlate quite
well near the wall, and a correlation was proposed for use in one-equation models

which avoids solving an additional equation of v '2. Together with the length-scale

relations introduced this forms a new one-equation model which should now be

tested in actual flow calculations.

The authors are grateful to Dr. Kim for providing the unpublished direct simu-

lation data for the channel flow at Re. = 395. The first author (WR) would like to

acknowledge the generous support of the Center for Turbulence Research.
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III. Turbulence structure and control group

There are 5 papers in this somewhat loosely coupled group. The common theme

of the group was to address various questions on turbulence structures and control,
and to resolve issues and controversies arising from existing practices, analyses,

and experimental data. Despite the short duration of the summer program, most

projects met the objectives, and some highlights of these findings are given below:

Berkooz performed an evaluation of a dynamical systems approach to the wall-

layer turbulence. This work was instigated by the recent work of Aubry et al. (1988,

see the ref. in Berkooz), in which they reported that all essential features of the

wall-layer dynamics were reproduced in their model of the wail-layer turbulence

using a low dimensional system. In an attempt to relate these results obtained

by the dynamical systems approach to those observed in a direct numerical sim-

ulation, Berkooz analyzed the computed flow fields by projecting them into the

eigenfunctions defined by the proper orthogonal decomposition. A few statistics in

the phase space were examined, but the evidence presented in the present paper is

rudimentary at best. Further work is needed to draw any definite conclusions on

the subject, and to examine whether this approach is a viable tool for developing a

practical control scheme as suggested by the author in the concluding remark.

Chen et al. investigated the topology of small scales in mixing layers by examining

the invariants of the velocity-gradient and the strain-rate tensor. This study was

based on a previous work which demonstrated that flow structures can be concisely

described in the space of invariants of the velocity-gradient tensor. Both compress-

ible and incompressible flow fields were examined. Flow structures obtained in the

invariant space were compared with those obtained in the physical space. Simi-

larities and dissimilarities in the information contained in the two approaches were

discussed. It was shown that a remarkable compression of information was achieved

by presenting flow structures in the invariant space. For example, the flow topolo-

gies visualized in the invariant space showed how the vorticity in the rib region

of a mixing layer was first stretched and then compressed as it was wrapped up

by the main vortex. A strong correlation between the second and third variants

(the first invariant is zero for incompressible flow and small relative to the others

for compressible flow) for motions associated with high rates of dissipation was ob-

served, suggesting that the triple products of velocity gradients may be related to

the double products in a simple manner.

Guezennec et al. investigated the scalar transport in a turbulent channel flow.

One of the objectives of this study was to address whether the heat-tagging for

vorticity as commonly done in laboratory experiments is indeed accurately marking

the vorticity. It was found that the correlation between the heat and vorticity

was high in the wall region, where heat was released, but low away from the wall,

suggesting that there exists considerable uncertainty in the use of passive markers for
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vorticity. Differencesbetweentheheatandmomentumtransportwereexaminedby
analyzing the terms that appear in the transport equations. The pressure gradient

term in the momentum equations (there is no pressure term in the heat equation)

was found to be the dominant term except in the near-wall region where the viscous

term becomes as significant as the pressure term. It was found that the mixing

of momentum was more efficient than that of heat because of the pressure term,

consistent with visual observations that passive scalars tend to wrap around more

along the edge of coherent vortical motions. It should be noted that there was

no high Schmidt (or Peclet) number effect since the numerical experiments were

performed at Pr _ 0.1,0.71,2. In the laboratory experiments where smoke or dye

is used to tag the vorticity, the Schmidt number effect also plays a role in addition

to the pressure effect discussed in the present paper.

Itsweire et al. examined the effect of shear and stratification on homogeneous

turbulence. They examined, inter alia, the nature of the microstructure patches

observed in ocean. This is an important problem in oceanic mixing, and there

exists controversy on the nature of these microstructure patches among oceanogra-

phers, whether these patches consist of active turbulence or fossilized turbulence.

They were able to show the effect of buoyancy on various turbulence length scales,

and presented criteria for the onset and complete fossilization of turbulence. They
presented a hydrodynamic phase diagram that describes the evolution of turbulence

from the active to the fossil region. They also performed an evaluation of existing

eddy diffusivity models using the direct simulation data, a step forward toward

developing a better turbulence model correctly accounting for the buoyancy effects.

Tam and Lele investigated possible resonant instability of a supersonic shear layer.

Tam came to the Summer Program to examine whether his asymptotic analysis, in

which he suggested the use of resonant instability to destabilize supersonic mixing

layers in a duct, can be realized in a simulated experimental environment other than

the idealized condition of the perturbation analysis. Although the outcome was

negative, i.e., they failed to observe any enhancement of mixing due to the resonant

instability (albeit the parameters they used were not the optimal ones), this was a
good example how theories and numerical simulations hand in hand can be utilized

to advance our understanding of turbulence. In the second part of their paper, they

also examined possible feedback instability as a mechanism for mixing enhancement

involving a supersonic and a subsonic stream. Some evidence of feedback oscillations

was observed, which was consistent with an existing feedback theory. These results

are encouraging, but more work is required to resolve issues involving such as non-

physical feedback and the short run time, etc., before a definite conclusion can be
drawn.

John Kim
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The structure of turbulent channe
flow with passive scalar transport .....

By Y. Guezennec', D. Stretch' & J. Kim s _._ ___l_:_ :-:_

The simulations of a turbulent channel flow with various passive markers were

examined to investigate the local mechanisms of passive scalar transport. We found

significant differences between the local transport of heat and momentum, even
when the molecular and turbulent Prandtl numbers are of order one. These dis-

crepancies can be attributed to the role of the pressure. We also found that .the

heat is a poor marker of the vorticity field outside of the near wall region and that

scalar transport over significant distances results from the aggregate effect of many

turbulent eddies.

1. Introduction

Our objective was to make use of the direct numerical simulations of a turbulent

channel flow with passive scalars (Kim _: Moin, 1989) to investigate the relation-

ship between the transport of a passive scalar and the underlying turbulent eddy

structures. Specifically, our objectives were fourfold:

1. The validation of experimental techniques such as heat tagging and smoke

visualization often used by experimentalists to "mark" turbulent structures.

2. The investigation of the role of the coherent structures in a turbulent channel

flow for the transport of a passive scalar.

3. The modeling of the scalar transport based on the mechanistic understanding

of the coherent structures.

4. The study of the interaction between large scales and the wall layer, and the

relation, if any, between the two wall layers.
The data bases examined were those described by Kim & Moin (1989), with addi-

tional cases subsequently obtained by J. Kim. More specifically, all cases correspond

to a turbulent channel flow at a Reynolds number Rer = 180 with fully developed

hydrodynamics. The simulations were performed with three scalars simultaneously

with Pr = 0.1,0.7 and 2.0, respectively. For this study, we concentrated our ef-

forts on the Pr = 0.7 case unless otherwise noted. The various simulations differed

by their boundary conditions for the thermal field and the state of their thermal

development. Case I corresponded to a fully developed thermal field with uniform

heat generation throughout the channel and both walls cold. Case II corresponded

1 The Ohio State University

2 Center for Turbulence Research

3 NASA Ames Research Center
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to a fully developed thermal field with one hot wall and one cold wall. It was cho-

sen because the average heat flux remains constant at any distance from the wall.

The remaining three cases were time developing thermal fields, with time history

available with a time spacing At + = 3. Case III corresponds to a cold channel flow

where one wall was suddenly heated at t = 0. Case IV was similar but with a heat

source at the center line instead of a hot wall and Case V was similar to Case III

with one wall heated and the other cooled. These latter three cases were intended

for the study of the development of the thermal field and for using the heat as a

marker to study the interaction between various regions of the flow.

The notation used in this report is as follows: u, v, w denote streamwise, vertical

and spanwise velocity fluctuations respectively. In the text 0 is used to denote tem-

perature fluctuations while the character t is used for temperature in the diagrams.

2. Validation of the Heat as a Marker of Vorticity

The underlying motivation for this task is the extensive use by experimentalists

of passive markers (heat, smoke or dye) to study the structure of turbulent wall

bounded flows. We wanted to investigate what the scalar really marks and how

that varies with the distance from the wall. To address this important question,

we correlated the temperature field (or the gradients of the temperature field) with

various components of the vorticity or enstrophy field. Not only did we examine

pointwise correlation coefficients but also conditional correlation coefficients and

spatial correlations. The data from case II were used for this investigation.

8

Case II

!
°

4

...:

-1.0
0 50 10(

y+

150 200

FIGURE 1. Conditional correlation coefficients between the temperature and

the vorticity magnitude as a function of the distance from the wall. Temperature

thresholds are --, 0; .... ,_'0; ........ ,2or0;----- ,__r0; __.N ,-2_r0.

Figure 1 shows a sample of the results where the temperature fluctuations were

correlated pointwise with the magnitude of the vorticity vector. The various curves
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correspond to different threshold values on the temperature fluctuations : a thresh-
old of zero is an unconditional correlation, whereas non-zero values correspond
to correlation coefficients conditional on the temperature exceeding that threshold

value. It can be noted that very near the wall (y+ < 15), there is a strong neg-

ative correlation between the temperature and the vorticity magnitude. This is

linked to the fact that the largest contribution to the vorticity fluctuation comes
from the u' fluctuations which are strongly correlated with the temperature (see

figure 2). In that region, the conditioning on strong temperature fluctuations does
not significantly affect the correlations. For y+ > 30, the unconditional correla-
tion coefficient becomes mildly positive but low in magnitude, implying that the

temperature (pointwise) becomes a poor marker of vortical fluid outside of the wall

region. However, by conditioning the correlation on the magnitude of the tempera-
ture fluctuations, the correlation improves somewhat in particular for large positive

temperature fluctuations (threshold value of 2 _o).

The rapid decorrelation of the temperature and the vorticity magnitude with

increasing distances from the wall partly stems from a loss of spatial phase in-
formation. This is particularly true at y+ = 25 where the pointwise correlation
coefficient becomes zero and changes sign. By examining the spatial correlation

maps (not shown here), one notices that the strong negative correlation observed
near the wall shifts in the downstream direction and that a positive correlation peak

appears upstream. This continuous change of the phase relationship between the

temperature and the vorticity magnitude renders the interpretation of the passive
marker difficult except near the wall. In the buffer region, the vorticity magni-

tude is better marked by the streamwise temperature gradient, while further away
from the wall the vorticity magnitude becomes weakly correlated with the strong

temperature fluctuations.
Other combinations of temperature, temperature gradients and vorticity compo-

nents were investigated. Away from the wall region temperature gradients correlate

slightly better with the vorticity magnitude, but we did not find a particular combi-

nation that gives a high correlation. These results suggest that there is considerable

uncertainty in the use of temperature as a marker for the vortical structures orig-

inating from the wall region. The reason for this will become clear later in this

report.

3. The Structure of the Heat and Momentum Flux

To investigate this aspect of the problem, Case II was chosen_ since it had the

property that the average total heat flux q = -v-0 + R_Pr _ was constant at any
distance from the wall. This allowed us to examine how this same average heat flux

was distributed in space and what underlying eddy structure was responsible for it
as a function of the distance from the wall.

Figure 2 shows the turbulent heat and momentum fluxes as a function of the dis-
tance from the wall. As mentioned earlier the streamwise velocity is well correlated

(negatively) with the temperature through a signifi___cantpart of the channel. As
observed before (Kim & Moin, 1989), the _-_ and vO have comparable magnitudes
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FIGURE 2. Turbulent heat and momentum fluxes as a function of the distance
u'-_ *,0 uO

from the wall. Curves are ,_._., ,_.-.,,

(and opposite signs) in the wall and log region, which means that the turbulent

Prancltl number PrT is nearly unity. The molecular Prandtl number Pr is also of

order one (0.7) in this case. However, the fluctuations in the products uv and vO

as measured by their root mean square values ¢r,,_ and _v0, are quite different. The

turbulent heat flux has a fluctuation level more than twice that of the momentum

flux, despite their nearly equal mean values. This difference led us to believe that

the turbulent transport of a passive scalar may be significantly different from the

momentum transport locally and instantaneously, despite being associated with the

same eddy structures, and despite the average transport _ and v-0 being similar.

Figures 3 and 4 show the contributions of the individual velocity and temperature

fluctuations to the turbulent momentum and heat flux, respectively. For the case

of the momentum, it can be observed that both u and v fluctuations are equally

correlated (but with opposite sign) with contributions to the momentum flux. The

change of sign around y+ = 20 corresponds to the point where the momentum flux

changes from being dominated by fourth quadrant motions (sweeps) near the wall

to second quadrant motions (ejections) away from the wall. For the scalar field near

the wall (9 + < 25), the heat flux contributions are predominantly from cold fluid

moving towards the wall, corresponding to fourth quadrant motions in the velocity

field. Both v and 0 are equally correlated with vO in this region. It should be noted

that this is also the region where cr_v is approximately equal to cry0. In the region

away from the wall (9 + > 25) the individual correlations between v and 0 and the

turbulent heat flux are quite different. The temperature fluctuations have near zero

correlation with the turbulent heat flux. This seems to indicate significant local

countergradient transport. It should also be noted that this is the region where

the fluctuations in the instantaneous turbulent heat flux are considerably higher
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FIGURE 3. Contributions of u and v to the turbulent momentum flux as a function

of the distance from the wall. Curves are -- ,u-uv correlation; .... ,v-uv

correlation.
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FIGURE 4. Contributions of v and 0 to the turbulent heat flux as a function of the

distance from the wall. Curves axe _ ,v-vO correlation; .... ,O-vO correlation.

than those of the turbulent momentum flux. There is therefore a lot of "churning"

of the scalar field by the eddies, but little actual mixing. This point is further

illustrated by examining the instantaneous velocity and temperature field. Figure 5

represents a cut of the channel perpendicular to the flow (yz plane). The spanwise

and normal velocity components axe shown as a vector plot and the color contours
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represent iso-levels of streamwise velocity fluctuations u on the top or temperature
fluctuations 0 on the bottom. The same number of contours was used for both

fields. It can be seen that for the same eddy structures, the temperature field seems

to be "wrapped" around the eddies more than the streamwise momentum. In other

words, a fluid particle being displaced in the normal direction by an eddy keeps its

temperature marking longer than it does its momentum marking. Figure 5 is for

a case where the molecular Prandtl number is of order one (0.7), but examination
of scalar fields corresponding to Pr = 0.1 and 2.0 indicated that the observed

effects are not sensitive to Prandtl number. The high Prandtl number case exhibits

sharper temperature interfaces but no significant changes in terms of the "wrapping"

around. Hence, the more rapid loss of momentum marking by a fluid particle cannot
be attributed to diffusive effects.

If one examines the instantaneous transport equations for momentum and tem-

perature, one significant difference is the absence of the pressure gradient term on
the right hand side of the temperature equation. Since the diffusive terms are similar

for both equations, the pressure must be responsible for the difference in behavior

between the two fields. To further quantify this point, the correlation coefficients

between the acceleration terms in the Navier-Stokes equations and the pressure and

viscous terms was calculated for each of the components. These are shown as a

function of the distance from the wall in figure 6. Similarly, the root mean square

values for those terms were also calculated and are shown in figure 7.

25

20"

15-

td

10-

5-

0
0

r.rn.s, of all Acceleration Terms

i .... ! ' I

I I
...............................T.................................i...........""_:_"_:::±...............................("................l_ |..................

' ..... i.............................T........_::::""_ _::..........................
I i ......_J"|

o ! i _'"

.......................................F.........................."_...............................[................................._"................................

i I i i

20 40 60 80 100 120

y+

FIGURE 7. Root mean square fluctuations of the various terms contributing to
the total accelerations as a function of the distance from the wall.

It can be observed that for the streamwise acceleration, the viscous terms are

slightly dominant in terms of magnitude and correlation near the wall (_]+ < 30),

but that away from the wall, the pressure gradient term is almost the sole contrib-

utor to the streamwise acceleration. More surprisingly, the normal and spanwise
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FIGURE 5. Comparison between the instantaneous streamwise velocity fluctuation field (top) and temperature fluctuation

field (bottom), highlighted with the vector plot of the spanwise and normal velocity components.
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FIGURE 6. Correlation coefficients between the total accelerations and the corre-

sponding pressure and viscous terms as a function of the distance from the wall.

acceleration terms are completely dominated by the pressure gradient term, even
in the so-called viscous region at 9 + = 10. In other words, the crosa.streara dynam-

lea are essentially inviscid! The viscous terms only play an indirect role through

the streamwise convection which ties in the normal and spanwise velocity compo-

nent through the incompressibility constraint. The dominant role played by the

pressure in the momentum transport explains the differences observed between the
momentum and scalar field. The absence of any significant effect of the molecular
Prandtl number mentioned earlier is consistent with the small contribution to the

acceleration terms by the viscous forces. In other words, once a fluid element has

been displaced in the normal direction by a turbulent eddy, it retains most of its

heat marking due to the lack of a strong diffusive effect (on the time scale of the
eddy dynamics) until it is "churned" again by the next eddy. On the other hand,
the same fluid element loses its streamwise momentum marking very fast, as strong

pressure gradient forces are generated locally to exchange the momentum of that
fluid dement with its surroundings. The turbulence is thus more efficient at "mix-

ing" the momentum than the heat, while the temperature retains a higher degree of
unmixedness and appears to "wrap" around the eddies as described earlier. These
observations are consistent with the fact that for the same net average heat flux

as momentum flux (PrT = 1), there is a higher level of fluctuations (tr_a > _,v).

There is significantly more local heat transfer in both directions (i.e. down-gradient
and counter-gradient transport) for a small net gradient transfer. This was further

verified by comparing the p.d.f, of the instantaneous heat and momentum fluxes

(not shown here).
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4. Pattern Recognition of the Dominant Eddy Structure

In order to further quantify the above observations regarding the structure of the

scalar flux, we applied an automated pattern eduction method to analyze the flow.

Details of the method are reported elsewhere (Stretch, 1989 ; Stretch, Kim and

Britter, 1990). It is based on an iterative convolution between a reference pattern
and the data.

A sample of the results obtained is shown in figure 8(a). The diagnostics used

in this example were the vertical and spanwise velocity fluctuations. The basic

ensemble averaged flow structure educed by the analyses consists of attached ed-

dies spanning the flow from the wall to near the centerline of the channel (see

Stretch, 1989 and Stretch, Kim and Britter, 1990 for further details). Ensemble

averages of the streamwise velocity fluctuations and the temperature fluctuations

were computed at the pattern locations and are included in figures 8(b) and (c).

As expected the large streamwise velocity fluctuations are associated with the up-

welling and downwelling motions which are in turn associated with the attached

eddy structures. It is further apparent from the ensemble averages that the scalar

perturbations have a greater vertical extent than the streamwise momentum fluctu-

ations. The scalar field also shows a slightly greater tendency to be wrapped around

the vortical structures. These results are consistent with the instantaneous fields

shown in figure 5 and further support the conclusions we have drawn above.

5. Time Evolution of the Temperature Field in a Developing Flow.

To quantify the effective net transport of heat by the turbulent eddies, the data

from Case III was examined. Since the fluid was initially cold, the effectiveness of

the net turbulent transport was judged by tracking in time the deepest penetration

of the temperature disturbance. This was repeated for various levels of temperature
disturbances.

The results are summarized in figure 9 for 10 different magnitudes of the tem-

perature disturbance. Naturally, the smallest temperature disturbance penetrates

the farthest and the fastest. For reference, the average penetration speed, Vp, was

calculated from the initial slope of these curves. For 0 = 0.05, this speed is 1.23ur,

while it is 0.4ur for 0 = 0.5. As a reference, the r.m.s, of the normal velocity fluc-

tuations _rv is of the order of 0.8u, for the bulk of that region. Those penetration

speeds computed represent an upper bound since they are calculated for the fastest

penetrating disturbances. The speeds are typical of the velocity magnitudes which
are induced around the vortical structures in the

previous observation that the scalar transport is

However these vortices or eddies have diameters

flow. This is consistent with our

associated with these structures.

typically much smaller than the

channel half width (d + _ 20 and 6 + : 180), a distinction which is expected to

increase with Reynolds number. It therefore seems that the turbulent transport

across significant distances in the normal direction results from the aggregate effect

of many eddies, each transporting a material element over a distance of order their

diameter at a speed of order ur, but not necessarily always in the right direction
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FIGURE 9. Outmost penetration of the turbulent heat flux as a function of time

for various levels of temperature disturbances.

as was discussed in section 3. Hence, it may take many interactions between a ma-

terial element and the turbulent eddies before it is "transported" over a significant

distance (say of the order of a few hundred of wall units). However, this process

is still far more ei_icient than a strictly diffusive effect. This aggregate transport

process also explains the poor marking of the vorticity field by the passive scalar.

6. Conclusions

In summary, the following conclusions were reached:

1. Outside the near wall region y+ < 20, one must be very careful in interpreting

the passive scalar concentration in terms of the underlying vortical eddy structure.

2. There are significant differences between the transport of momentum and heat,

even when the molecular and turbulent Prandtl numbers are of order one. These

differences are linked to the role of the pressure•

3. The transport of passive scalar over significant distances appears to result

from the aggregate interaction of many eddies.
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direct numerical simulations of time-developing

compressible and incompressible mixing layers

By J. H. Chen 1, M. S. Chong _, J. Sor ia3, R. Sondergaard%

A. E. Perry _, M. Rogers 5, R. Moser 5 AND B. J. Cantwell 4

A preliminary investigation of the geometry of flow patterns in numerically sim-

nlated compressible and incompressible mixing layers was carried out using 3-D

critical point methodology. Motions characterized by high rates of kinetic energy

dissipation and/or high enstrophy were of particular interest. In the approach the

partial derivatives of the velocity field are determined at every point in the flow.
These are used to construct the invariants of the velocity gradient tensor and the

rate-of-strain tensor (P, Q, R, and P0, Q,, R° respectively). For incompressible
flow the first invariant is zero. For the conditions of the compressible simulation,

the first invariant is found to be everywhere small, relative to the second and third

invariants, and so in both cases the local topology at a point is mainly determined

by the second and third invariants. The data at every grid point is used to construct

scatter plots of Q versus R and Q, versus R0. Most points map to a cluster near

the origin in Q-R space. However, fine scale motions, that is motions which are
characterized by velocity derivatives which scale with x/_, tend to map to regions
which lie far from the origin. Definite trends are observed for motions characterized

by high enstrophy and/or high dissipation. The observed trends suggest that, for

these motions, the second and third invariants of the velocity gradient and rate-
of-strain tensors are strongly correlated. Motions corresponding to high rates of

dissipation are found to be characterized by a 3-D rate-of-strain topology which is

of the type saddle-saddle-unstable-node; the topology saddle-saddle-stable-node is
not observed for these motions. The second and third invariants of the rate-of-strain

tensor are related by R, -_ K(-Q°) s/2, which is consistent with the above scaling

of velocity derivatives. The quantity K appears to depend on Reynolds number

with an upper limit K = 2x/_/9 corresponding to locally axisymmetric flow. For

both the compressible and incompressible mixing layer, regions corresponding to

high rates of dissipation are found to be characterized by comparable magnitudes

of Rij Rij and Sij Sij. For the incompressible mixing layer, regions characterized by
the highest values of enstrophy are found to have relatively low strain rates.

1 Sandia National Laboratories

2 Dept. of Mech. Eng., The University of Melbourne, Australia

3 CSIRO, Highett, AustraJia

4 Dept. of Aero/Astro, Stanford University
5 NASA Ames Research Center



140 J. It. CAen, et al.

1. Background

The high wavenumber motions of turbulence are not well understood. The clas-

sical Kolmogorov theory for the inertial and dissipation subrange claims that such

motions axe locally isotropic and that kinetic energy flows from the low wavenumber

end of the spectrum to the high wavenumber end by a cascade process. These ideas

have been questioned for many decades, and no satisfactory physics] picture has

emerged which will support or refute the Kolmogorov model. For a recent apprecia-

tion of this problem see Frisch and Orzag (1990), who note that less is known about

the fine scale structure of turbulence than about the structure of atomic nuclei.

The purpose of this project is to initiate a study of the geometry of high wavenum-

bet motions using data from recent direct numerical simulations of free shear layers.

The cases studied included the time developing compressible mixing layer computed

by Chen (1990) and the time developing incompressible mixing layer computed by

Moser and Rogers (1990). The conditions of the two simulations are as follows:

incompressible compressible

_convectlve 0 0.8

Initial R6 500 800

Final R6 3000 1600

Grid 128×256×64 384x201×192

where R6 is the Reynolds number based on the layer velocity difference, U1 -/32 =

2U and vorticity thickness, R6 = (UI - U_)5/v. The actual data in both com-

putations is normalized by the half-velocity difference, U, and the initial vorticity

thickness of the layer, 60. The final Reynolds number of the incompressible com-

putation is here estimated in terms of the instantaneous vorticity thickness which

fluctuates considerably with time. A more stable length scale is the momentum

thickness which increases by a factor of 6.5 over the course of the computation. Re-

sults for the incompressible case at R6 : 3000 are shown in Figures 3-11. Results

for the compressible case at R6 = 1600 are shown in Figures 3-5 and Figures 12-14.

All results presented in this paper are normalized by U and 50.

These simulations, particularly the incompressible case, are at Reynolds numbers

which begin to approach values for which the layer would be regarded as simulating

turbulent flow. At the late stages following a vortex pairing in the simulation by

Moser and Rogers, the mixing layer exhibits tertiary instabilities similar in structure

to the so-called "mixing transition" observed in laboratory experiments (BernM and

Roshko, 1986).

2. Approach

Topological methods are useful in the description of fields and are coming increas-

ingly into use as a means to study large data sets generated by direct numerical

simulation. In a previous summer program of the Center for Turbulence Research,
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Hunt, Wray, and Moin (1988) developed criteria based on the invariants of the ve-

locity gradient tensor and properties of the local pressure field to identify important
characteristics of flow zones in direct numerical simulations of homogeneous turbu-

lence and turbulent channel flow. Recently Chong, Perry, and Cantwell (1990) have

carded out a classification of the various types of linear three-dimeusional flow pat-

terns which can occur in compressible and incompressible flow. This classification

was used by CantweU, Chen, and Lewis (1989) and Chen, Cantwell, and Mansour

(1989) to analyze the topology of the flow structure in direct numerical simula-
tions of a compressible plane wake and in experimental measurements of a pulsed

low-speed diffusion flame. The method is based on concisely summarizing the flow

structure in the space of invariants of the velocity gradient tensor.
The velocity gradient tensor may be broken up into a symmetric and an anti-

symmetric part, Aq = 0ul/0zj = Sij + Rq, where Sij = (_ui/Ozj + 0uj/0zi)/2

and Rij : ( _ui/ Ozj -Ouj/Ozi)/2 are the rate-of-strain and rate-of-rotation ten, ors
respectively. The eigenvalues of Aij satisfy the characteristic equation

+ + + R = 0 (1)

where the matrix invariants are:

and

P =-(all + a22 + ass) -- -trace[A] = -Sii

O,21 0.22 G.31 a33 0.32 _33

1
_- [P'-trace{A'l]

1

(2)

(3)

0,11 O'12 0,13 ]
R=-0,21 0,22 a2_ =-det[A]

0,31 0,32 0,33

l(_p + 3PQ - trace[A ])
v

_(_pS + 3PQ - SqSjhSki - 3R_jRjkShi). (4)

During the course of the work, it was decided to focus attention on the symmetric

part of the velocity gradient tensor, the second invariant of which is proportional to

the negative of the kinetic energy dissipation. The invariants of the rate-of-strain

tensor, P,, Q,, and Ro, are generated by setting the components of Rij to zero in
the above relations.

It can be shown that, in the P-Q-R space of matrix invariants, the surface which

divides real solutions from complex solutions is

27R 2 + (4P 3 - 18PQ)R + (4Q 3 - p2Q2) = O. (5)
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A detailed discussion of the properties of this surface is given in Chong, Perry, and

Cantwell (1990) along with a guide to the various possible elementary flow patterns
which can occur in different domains.

The method used to classify the flow structure was as follows:

(i) Evaluate the nine partial derivatives of the velocity gradient tensor at

every point in the computed field.

(ii) Determine the invariants P, Q, and R and P0, Q,, and Ro at every

point. For incompressible flow P = 0 and, for the compressible case

considered, P turned out to be quite close to zero over the whole flow.

This is consistent with the fact that, at the convective Mach number of

the compressible simulation, eddy-shocklets are not observed (Sandham

and Reynolds, 1989).

(iii) Create a scatter plot of the results in the space of.tensor invariants Q
versus R and Qm versus Rs.

Figure 1 indicates the various flow topologies which can occur in the plane

P = 0. The intersection of this plane with the surface (5) is given by

R = +2___ (_0)3/2 (6)

which divides real solutions from complex solutions as indicated in Figure 1.

For the case P = 0 the second invariant is

1 R
Q = _[ ijRij - SijSij] (7)

where the indices of one of the rotation terms and one of the strain terms have been

switched to indicate that Q is formed from two terms, each of which is a sum of

squares. The local topology has complex or real eigenvalues depending on whether

the (Q, R) pair, e_uated at a given point in the flow, lies above or below (6). The

mechanical dissipation of kinetic energy due to viscous friction is

¢ = 2vSijSij = -4r, q,. (8)

Large negative values of Qs correspond to large rates of dissipation of kinetic energy.

Large negative values of Q indicate regions where the strain is both large and

strongly dominant over the enstrophy. Large positive values of Q indicate the
reverse.

Figures 2a and 2b show typical instantaneous local streamline patterns in

canonical coordinates corresponding to either real (Figure 2a) or complex (Figure

2b) eigenvalues. These are the flow patterns which would be seen by an observer

moving with the fluid velocity at the point where P, Q, and R are being evaluated.

Figure 2c illustrates a flow which can occur only in a compressible flow. The patterns

illustrated in these figures represent the stable and unstable cases where only the

direction of the flow along the streamlines is reversed.
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VELLOM

Stable Focus/

St retc_

q

BLUE

Unstable Focus/

Co_press ing I_

FIGURE 1. Identification of local flow topologies in the plane P = 0.

3. Incompressible time developing mixing layer

3. I Flow structure in phyjical _pace

Figures 3a, 3b and 4a, 4b show contour plots of the enstrophy and dissipa-

tion respectively in two planes through the mixing layer computation of Moser and

Rogers (1990). The flow depicted is at a late stage in the development of the layer
when the Reynolds number based on the current vorticity thickness has reached

approximately 3000 (tU/_o = 29.8- after vortex pairing). At this point, well devel-

oped streamwise vortices (ribs) have formed and the layer has undergone a tertiary
breakdown similar to the mixing transition observed in experiments. Two planes

are chosen to illustrate the flow because, as can be seen, the observed plots are

quite different depending on whether or not the plane passes through the center
of one of the streamwise vortices. The main points to note axe that high values

of the enstrophy and high rates of dissipation occur in relatively isolated regions

which tend to be highly elongated in the streamwise direction. At first sight, they

appear to occur in approximately the same regions, although this is more obvious
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(b)

(,)

FIGURE 2. Local flow patterns in canonical coordinates: (a) stable-node-saddle-

saddle, (b) stable-focus-stretching, (c) stable-focus-compressing (compressible case
only).
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FIGURE 3. Maps of the enstrophy field in two planes: (a) vertical rib plane, in-

compressible case, (b) vertical in-between plane, incompressible case, (c) horizontal

plane at the middle of the layer, compressible case.
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_/ .i-t - o .
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(.)

(b)

Q

FIGURE 4. Maps of the dissipation field in two planes: (a) vertical rib plane, in-

compressible case, (b) vertical in-between plane, incompressible case, (c) horizontal

plane at the middle of the layer, compressible case.
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FICUItE 5. Maps of the local flow topology in two planes: (a) vertical rib plane, in-

compressible case, (b) vertical in-between plane, incompressible case, (c) horizontal

plane at the middle of the layer, compressible case. See Figure 2 for color code•
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in comparing Figures 3b and 4b than in comparing Figures 3a and 4a.

3._. Flow structure in invariant space

Figures 5a and 5b depict in a new way the same two planes of data as Figures
3 and 4. In these figures, the flow is colored according to the local topology as

determined by the values of the second and third invaxiants of the velocity gradient

tensor, Q and R. To understand the color code in Figure 5, it is helpful to refer

back to Figures 1 and 2 where the various possible topologies are identified. There
is an incredible compression of information which has been achieved in producing

Figure 5 which effectively summarizes the local topology at every point in the chosen

plane of data. There is a high degree of correspondence between regions of constant

topology and the enstrophy contours in Figure 3a.

When information from Figures 3 and 5 is combined, one can get some under-

standing of where the vorticity is being stretched and where it is being compressed.

For example, following the yellow ribs from the left and right sides of the plot, one

encounters elongated islands of blue which are roughly centered above and below the
main vortex. In terms of the topology, there has been a change from stable-focus-

stretching (yeUow) to unstable-focus-compressing (blue) in this region. Combining

Figures 3, 4, and 5, one can see that the region where compression of the vortex

is taking place coincides closely with maxima in the energy dissipation which lie
above and below the main vortex. Vorticity in the ribs is first stretched and then

compressed as it is wrapped up by the main vortex with high rates of kinetic energy

dissipation being generated in the process.

3._,.1 Rate.of.strain ten, or, definition of fine scales

Figure 6 shows a scatter plot of Qo versus Ro for the entire flow field. The

figure was produced by plotting Qo versus Re for every grid point in the computa-
tion. Before discussing this figure, a sfight digression is in order to see how it might

help to reveal the nature of the fine scale structure in this flow.

Classical arguments, based on the idea that dissipation of turbulent kinetic en-

ergy scales with production, lead to the following estimate of the rate of dissipation
of turbulent kinetic energy in a time developing turbulent shear flow.

_-
e= 2vS_jS_j "_ -u v -_ _- 0.158 Us/50

(9)

where the last equality is taken from the dissipation rate calculated at tU/8o : 29.8

by Moser and Rogers (1990). Typical data for fully developed shear layers gives

-u-_v'/(Ul - U2) 3 = 0.012, which is consistent with the right hand side of (9) when
the factor of 2 in the velocity normalization is taken into account. The data in

Figures 3-11 correspond to a time when the layer has increased in thickness by a
factor of approximately 6.5. Since the normalization of the raw data is based on

the initial vorticity thickness, this has to be accounted for in using (9) to get an
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qs
5.DO

FIGURE 6. Scatter plot of Q, versus R, for the incompressible case at tU/6o = 29.8.

idea of the instantaneous strain rate magnitude required to balance the production

of kinetic energy at the time corresponding to R6 = 3000. The result is

ij °ij oo
U2 -_ 0.04 R6 = .04 3000 -_ 18.2 (10)

where the Reynolds number is based on 2U and the current vorticity thickness, &

Equation (10) implies that the fluctuating strain rates are larger than the mean

strain rates by a factor of only about ten to twelve at a Reynolds number of 3000.

To a rough approximation the relation (10) will he taken as a fair estimate of the

instantaneous rate-of-strain compared to the mean rate-of-strain. Equations (9)

and (10) imply that fluctuating velocity gradients scale with (R6)1/_; therefore, we

would expect that, in a region where the dissipation is large,

Qa _ R6

R, _ (R_) 3/_. (11)

We will define fine scale motions as represented by those points which lie far from

the origin in (Q,, R,) space according to the scaling in Equation (11).

Based on the estimate given in (10), values of Q, on the order of -9.1 or less

ought to be regarded as contributing significantly to the energy dissipation (com-

pared with values of Q, on the order of -(2/6.5) 2 = -0.09 characterizing the largest
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FIGURE 7. Distributions of Q° over the volume of the incompressible mixing layer:

histogram Q oN ( Q o).

scales). The assumption which underlies (9) and (11) is that the fluctuating strain
rates are distributed uniformly throughout the flow. Values of Q° on the order of

-9.1 and lower are observed in Figure 6. Figure 7 shows the weighted probability

distribution of Q°. The integral under the curve in Figure 7 is proportional to the

total dissipation of kinetic energy. As can be seen, the main contribution to the

integral is from motions characterized by Q° less than about 3, which is somewhat
inconsistent with the estimate given in (11). The explanation for this discrepancy is

that fine scale motions which contribute to the overall dissipation are not distributed

uniformly throughout the volume of the flow; there is significant spatial intermit-

tency with the occasional occurrence of very strongly dissipating events with values

of Q° as low as minus 10 to 14, as can be seen in Figure 6. It should be noted in

this regard that the scattering of points with Q° less than 5 to 6 constitutes a small
fraction of the whole data set and that the major portion of the total dissipation is

accounted for by events with Q° between 0.5 and 5.

Combining the relations in (11) gives

IRol (IQ01)3/2 (12)

where absolute values are used to avoid inconsistencies in the sign. Equation (12)

describes the scaling of R° with Q° for fine scale motions which one might expect
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FIGURE 8. Scatter plot of Q° versus R, for the incompressible case at tU/6o = 19.3.

based purely on dimensional reasoning. There is no reason to expect that Q, and R,

should be related to one another in any simple way since there is no restriction on

either quantity save that imposed by the symmetry of the strain tensor and by the

Navier-Stokes equations themselves. In principle, (Q,, R,) points can lie anywhere

as long as they axe below the curves given in Equation (6).

The unexpected result depicted in Figure 6 is that motions characterized by

very high rates of dissipation (large negative Q,) clearly show a preference for the

right half plane of Figure 6 corresponding to a local topology (with the rotational

part removed) which is saddle-saddle-unstable node (cf. Figure 2a). It is important

to note that this preferred local topology is based on the rate-of-strain tensor.

The corresponding local topology based on the velocity gradient tensor admits all

possible incompressible topologies. Not only is the basic scaling (12) observed, but

it appears that, with a modest amount of scatter, the fine scale motions follow a
relation of the form

R, _ K(-Q,) s/2. (13)

The positive quantity K is expected to be a function of the Reynolds number

with an upper limit of K = 2v/3/9 corresponding to locally axisymmetric flow. A

sampling of the computation at an earlier time in Figure 8 (tU/6o = 19.3, before

vortex pairing) reveals a substantially ]ess developed structure, although the strong

preference for the right half plane is still apparent.
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FIGURE 9. Scatter plot of Q versus R for the incompressible case at tU/_o = 29.8.

3._._ Velocitp gradient tensor, regions of high enstrophp

Figure 9 shows a scatter plot of Q versus R for the entire flow field. The figure

was produced in the same manner as Figure 6. For the velocity gradient tensor all

of the possible topologies in the plane P = 0 can and do occur although, once again,

the fine scales (points farthest from the origin) show a strong preference.

With reference to Figure i, the motions with largest enstrophy show a clear

tendency to a topology which is of the type stable-focus-stretching which is consis-

tent with the expectation that the mixing layer is dominated by streamwise vortices

undergoing stretching.

A question which immediately arises is whether the motions with highest

enstrophy are the same motions which contain the highest dissipation rates. To

address that question, it is necessary to split Q into its component parts R_jRij

and SijSij. Figure 10 shows these two quantities plotted against each other for

the same sample as in Figure 9. The most remarkable feature in this figure is the

concentration of points along the horizontal axis.

Points of highest enstrophy tend to be characterized by low rates of strain.

The larger the enstrophy, the lower the associated rate of strain. In contrast, points

characterized by high rates of dissipation tend to lie on a 45 degree line in Figure 1O

i.e., they tend to have comparable magnitudes of RijRij and SijSij. This explains
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FIGURE 10. Plot of SijSij versus RijRij for the incompressible case at tU/6o =
29.8.

the absence of large negative values of Q in Figure 9.

It remains now to associate the structures found in the scatter plots with

physical features of the flow field. Figures lla and b are contour plots of the

enstrophy field corresponding to the two planes shown in Figures 3 and 4 to typify

the flow: one passing through the center of the main streamwise vortices (the rib

plane), the other passing between the streamwise vortices (the "between plane"

using the designation of Moser and Rogers). The sample space for plots of SijSij

versus R_jRij in Figures 11c and d is restricted to these two planes. A comparison

of Figures 11c and 10 shows that regions of highest enstrophy occur in the rib plane.

From Figure lla, note that regions of highest enstrophy (blackened regions) occur

in the streamwise vortices and do not coincide with regions of highest dissipation

(cross-hatched regions). The streamwise vortices appear to be undergoing near
solid-body rotation.
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A comparison of Figures lld and 10 shows that the highest values of dissipa-

tion occur in the in-between plane with dissipation and enstrophy at a given point

having comparable values. Figure 11b confirms this with highest enstrophy re-

gions (blackened regions) coincident with highest dissipation regions (cross-hatched

regions).

The physical process suggested by these observations is that streamwise vor-

ticity in the ribs is increased as it is stretched until it begins to be wrapped into the

main spanwise vortex when, having reached a maximum, the stretching is reduced,

undergoing a change of sign causing the vortex to contract axially while expanding

radially, leading to a dissipating event which resembles the change of flow topology

which occurs in vortex breakdown (Brown and Lopez, 1990). Although the details

of this process need considerable further study, this description is consistent with

the observed flow topology.

4. Compressible time developing mixing layer

Figures 3c and 4c are contour plots of the enstrophy and dissipation in a

horizontal plane through the compressible mixing layer computation of Chen (1990).

Note that in this case the chosen plane is perpendicular to the planes in Figures

3a and 3b used to study the incompressible layer. At a convective Mach number

of 0.8, the plane mixing layer is more unstable to oblique disturbances than to

spanwise disturbances, and as a result the flow is not dominated by well defined

spanwise rollers as in the incompressible case. Note that high values of enstrophy

and high rates of dissipation occur in relatively isolated regions. It appears that

regions having high values of enstrophy also tend to have high values of dissipation.

Figure 5c shows the color coded topology corresponding to the same plane

shown in Figures 3c and 4c. Although compressibility effects in this case would be

considered to be fairly strong, the topologies observed in this plane are for the most

part the same as those summarized in Figure 1 for P = 0. Exceptions, indicated in

black (stable-focus-compressing) and cyan (unstable-focus-stretching), tend to occur

in narrow regions separating commonly occurring zones of stable-focus-stretching

and unstable-focus-compresslng.

Figure 12 shows the scatter plot of Qo versus R, for this case. The P = 0

boundaries between real and complex solutions have been plotted on this figure,

although it must be kept in mind that deviations from P : 0 do occur (as shown

in Figure 13b), and a few points near the origin end up outside the apparent zone

of real eigenvalues. Needless to say, these points do lie in the correct place with

respect to the surface (6).

The Reynolds number of this case is somewhat lower than the incompressible

case and the presence of compressibility tends to suppress instability; nevertheless,

we see in Figure 12 the same strong tendency for points to lie in the right half plane

that we saw in the incompressible case.
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FIGURE 11A, B. Association between physical space and invariant space: (a) en-
strophy field in a rib plane, (b) enstrophy field in an in-between plane.
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FIGURE 11C, D. Associationbetween physicalspace and invariantspace:(c)plot

of SijSij versus RijRij for the data in (a), (d) plot of SijSij versus RijRij for the

data in (b).
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FIGURE 12. Scatter plot of Q, versus R, for the compressible case.

The scatter plot of Q versus R is shown in Figure 13a. Regions with com-

plex eigenvalues still tend, as before, to lie in the second quadrant (stable-focus-

stretching). However, well developed structures with large enstrophy are not ob-

served. This is supported by Figure 14 where SijSij is plotted versus RijRij.

Points with high dissipation tend to lie on a 45 degree line and, hence, are

associated with comparable levels of strain and rotation as in the incompressible

case, but the long tail of nearly strain-free high enstrophy does not occur. The

conclusion from this is that well developed streamwise vortices are not a necessary

condition for the breakdown to dissipating motions which follow the trend given in

(13). In this respect, the discussion at the end of the previous section only describes

one possible route to the formation of dissipating motions.

5. Concluding remarks

The fine scale motions in direct numerical simulations of time developing

incompressible and compressible mixing layers appear to be characterized by rel-

atively simple relations between the second and third invariants of the velocity

gradient and/or rate-of-strain tensor. The prospect that triple products of velocity

gradients may be related to double products is significant in that it could eventually

form the basis of a closure hypothesis for the contribution of the fine scale motions

to momentum and energy transport in an under-resolved computation of the flow.
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Scatter plots for the compressible case: (a) Q versus R, (b) Q versus
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FIGURE 14. Plot of SijSij versus RijRij for the compressible case.

Whether such a closure can be accomplished depends on the outcome of further
studies in this area.

The procedure outlined in section II needs to be applied to a variety of direct
simulations including wakes, jets, homogeneous turbulence, and simulations of wall

bounded flows to see if the observed relationships between Q0 and R° and Q and R

are universal. Our expectation is that there is a good chance that they are; however,
this will not be known for certain until further studies are completed.

In the present study, the fine scale motions for which Ro = K(-Q°)_/_ only
account for a modest fraction of the total dissipation of kinetic energy. Higher
Reynolds number studies are needed to see whether this is a consequence of the low
Reynolds number of the present simulations.

If the trends seen in the present study are found to be universal, and if at
high Reynolds number these trends are found to characterize the motions which

accomplish a significant fraction of the total dissipation of kinetic energy, then
this will constitute a significant step on the path toward a theory of the fine scale
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structure of turbulence. A great deal of theoretical work is needed to discover why

high Reynolds number solutions of the Navier-Stokes equations tend to follow these
trends, to account for the spatial intermittency of the fine scale structure, and to

generate theoretical support for closure relations founded on fundamental physical

principles.
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Direct numerical simulations of

stably-stratified sheared turbulence:
implications for oceanic mixing

By E. C. Itsweire, 1 S. E. Holt, _ J. R. Koseff 2 AND J. H. Ferziger s

Direct numerical simulations of the time evolution of homogeneous stably strati-

fied turbulent shear flows have been performed for several Richardson numbers Ri

and Reynolds numbers Rx by Holt (1990). The results show excellent agreement

with length scale models developed from laboratory experiments to characterize

oceanic turbulence. When the Richardson number Ri is less than the stationary

value Rio, the turbulence intensity grows at all scales, and the growth rate appears
to be a function of Ri. The size of the vertical density inversions also increases.

On the other hand, when Ri >_ Ri° the largest turbulent eddies become vertically

constrained by buoyancy when the Ellison (turbulence) scale LE and the Ozmidov

(buoyancy) scale Lo are equal. At this point, the mixing efficiency is maximal

and corresponds to a flux Richardson number Rf -- 0.20. The vertical mass flux

becomes counter-gradient when e = 19uN 2, and vertical density overturns are sup-

pressed in less than half a Brunt-VKis_lK period. The results of the simulations

have also been recast in terms of the Hydrodynamic Phase Diagram introduced in

fossil turbulence models (Gibson, 1980, 1986). The so-called point of fossilization

occurs when e -- 4DCN2; Gibson proposed 13DCN 2. This value is in agreement

with indirect laboratory observations (Itsweire et al., 1986) and field observations

(Dillon, 1984). Finally, the validity of the steady-state models to estimate vertical

eddy diffusivities in the oceanic thermocline is discussed.

1. Introduction

The behavior of homogeneous turbulence subjected to both mean shear and a

stable density gradient is complex as two processes compete. Turbulence energy

is extracted from the mean flow by shear production and is mostly transferred

to the streamwise velocity component, while stabilizing buoyancy forces tend to

suppress energy in the vertical direction by converting turbulent kinetic energy into

available potential energy. This potential energy is available for mixing. Therefore,

through distinct mechanisms, both shear and buoyancy act to make turbulence more

anisotropic. Depending on the ratio of the mean shear to the mean stratification,

expressed as the Richardson number Ri, both growth and decay are possible (Rohr

1 Chesapeake Bay Institutes The :Johns Hopkins University

2 Department of Civil Engineering, Stanford University

3 Depsrtment of Mechanical Engineering, Stanford University
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et al. 1987, 1988, hereafter referred to as RHIV and RIHV; Gerz et al., 1989; Holt

et al., 1990). A net balance between production, buoyancy and dissipation is only

achieved when Ri is equal to the stationary Richardson number Ri,. In that case,

Holt et al. (1990) showed that low wavenumbers gain kinetic energy from the mean

shear while high wavenumbers have a net loss of energy to viscous dissipation.

The temporal evolution of homogenous turbulence subjected to constant mean

velocity and density gradients was numerically simulated by Holt (1990) using the

pseudo-spectral method developed by Rogallo (1981). The Boussinesq form of the

Navier-Stokes equations were solved for the three dimensional velocity and density

fields in a 128× 128x 128 box. The velocity fields were initiMly isotropic, with initial

Reynolds numbers R_ varying from 45 to 140 and Richardson numbers Ri from

0.0575 to 1. In the results presented in this paper, the Prandtl number Pr was 1

for the low Reynolds number cases and 2 for the high Reynolds number case that

simulates the laboratory experiments of Rohr et al. (1987, 1988). Further details

on the numerical procedures and the choice of initial conditions can be found in
Holt (1990).

2. Theoretical framework for stratified shear flows

_.1 Equation_ of motion

The coordinate system is chosen as follows: z is the streamwise direction, y

the transverse direction, and z the vertical direction (up being positive), in which

there are mean velocity and density gradients. For homogeneous flows satisfying

the Boussinesq approximation, the evolution equations for the velocity and scalar
fluctuations become:

ou gp______ (1)
2) = -u--_ Oz Po

and

o -- o#
b-/(pV2) = -pw - x (2)

where qa = u 2 + v _ + w 2 is twice the turbulent kinetic energy, p0 is the background

density, • =t'(Oui/Ozh)(Oui/Ozk) is the dissipation rate of turbulent kinetic energy,
X = D(VP) 2 is the rate of destruction of density fluctuations due to molecular diffu-

sion, and D is the molecular diffusivity of the scalar. The overbar (--) designates

an ensemble average over the computational box. Note that most oceanographers

define X as twice this quantity (e.g., Dillon, 1982; Gargett et al., 1984; Gregg,
1989). These two equations can be rewritten as evolution equations for the kinetic

[EK = ½_] and potential [Ep = ½(g/po)-_/(O_/cgz)] energies as:

OEK

ot = P - B - • (3)

and

OEp
Ot - B- DCN 2 (4)
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where the turbulent production due to the mean shear is

p = -'_-_00/Oz,

the buoyancy flux is

the Brunt-V_is_g frequency is

B =

1

and  vp)'
C=

(0 /0zp

is the isotropic Cox number. The vertical eddy diffusivities for mass and momentum,

Kp and K,,, respectively are defined via:

(5)

and
K,,, O0" (6)

u-w----

These eddy diffusivities are proportional to the buoyancy flux and turbulent pro-

duction respectively.

_.._. Relevant length 8caleJ

The behavior of stably stratified turbulent flows can be interpreted in terms of the

relative strength of three forces: the buoyancy, inertial, and viscous forces. Buoy-

ancy forces act directly on the largest scales of vertical motion, thus creating an up-

per bound for the size of turbulent eddies, while viscous forces determine the size of
the smallest eddies. The action of these forces can be quantified using length scales

obtained from dimensional analysis and physical arguments. Dougherty (1961) and

Ozmidov (1965) independently suggested that buoyancy effects are important on a

scale proportional to the Ozmidov scale:

Lo = (,/Na) I (7)

If the vertical velocity fluctuations due to internal waves are small compared to

those due to turbulence, the buoyancy scale Lb = (_-_)½/N can be used instead of

the Ozmidov scale. On the other end of the scale domain, viscous effects are felt by

turbulent eddies of size comparable to the Kolmogorov scale:

LK = i (s)
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FIGURE 1. Example of an instantaneous density profile used to calculate the

Thorpe scale LT. The mean (........ ), instantaneous (--) and reordered or

gravitationally stable (.... ) density profiles are shown on the left and the vertical

Thorpe displacements d(z) on the right.

Finally, we require a length scale that characterizes turbulent motions to be

compared with Lo and LK. Several turbulent scales can be defined depending on

whether one is interested in the energy-containing eddies that are directly related

to density overturns or in the dissipative eddies related to mixing. Ellison (1957)
proposed the following scale:

a#/o (9)

known as the overturning scale or ELlison scale, using the density fluctuations as an

indicator of turbulent motions. Thorpe (1977) presented a way to compute a scale

directly related to density overturns from instantaneous density (or temperature in

his case) profiles. The technique is best illustrated with the help of Fig. I.

The instantaneous density profile (--) contains gravitationally unstable inver-

sions. Thorpe's method consists of rearranging this density profile until each fluid

element is gravitationally stable ( .... ) and keeping track of the vertical (Thorpe)

displacements d(z) associated with the sorting. The typical signature of an over-

turn is a Z pattern in both density and Thorpe displacements like the overturns

observed at depths of 9, 15, and 22 cm in the example of Fig. I. The rms value of

the Thorpe displacements (over a region of constant density gradient) is called the
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FIGURE 2. Comparison of the (rms) Thorpe Scale LT with the Ellison scale LE,

0 Ri = 0.075; Z_ Ri = 0.21; D Ri = 0.37; V Ri = 1.

Thorpe scale (Dillon, 1982; Itsweire, 1984):

LT =< d(z) 2 >'_ (10)

where < > denotes a vertical average. For homogeneous flows, the maximum

Thorpe displacement
LT,n_z = Lp --- maz[d(z)] (11)

is a measure of the largest turbulent overturns and, for inhomogeneous flows it can

be interpreted as the size a turbulent patch. In the present case, both LT and

Lp have been ensemble-averaged over 4096 vertical profiles in order to reduce the

variance.

Figure 2 shows the comparison between the Ellison and the Thorpe scales for

the high Reynolds number numerical simulations (R_ = 140). The two scales are

linearly related except in the high Richardson number case (Ri = 1, the three left-

most _ correspond to dimensionless times St = 5, 6 and 8, where S = aU/az is the

imposed mean shear. At Ri = 1, internal waves motions could contribute signifi-

cantly to L_, but would not affect LT (Itsweire, 1984). The observed relationship

LT = 0.8LE is not significantly different from the LT = LE relation observed in

the laboratory (Itsweire, 1984), if one accounts for the differences in the vertical

resolution attainable in the laboratory and the direct simulations.
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FIGURE 3. Evolution of the Ozmidov scale Lo, the Ellison scale LE, and the
Kolmogorov scale LK as a function of dimensionless shear time St for different

Richardson numbers Ri: -- Lo; ........ 0.95LE; ----- 9LK.

3. Length scale evolution as a function of Ri

The effects of mean shear and stratification on the evolution of the turbulence

is illustrated in Fig. 3, where three length scales, Lo, LE, and LK, are compared.

According to Itsweire et ai. (1986) and RIHV, the onset of buoyancy effects occurs

when Lo = (1.15 + 0.05)LE and complete fossilization (the point at which the

buoyancy flux first goes to zero) takes place when Lo = (8.75+1.2)LK. In the direct

numerical simulations, these two transition points occur when Lo = (0.95 + 0.05)L/_

and when Lo : (9 4-0.5)LK respectively, in excellent agreement with the laboratory

experiments. In order to facilitate the comparison, LE and LK have been multiplied
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z_ Ri = 0.21; 13 Ri = 0.37; _7 Ri = 1.

by the appropriate constants in Fig. 3.
When the Richardson number Ri is less than the stationary Richardson number

Ri, = 0.21 (Fig. 3a), both the Ozmidov and the Ellison length scales grow when

the flow is fully developed (St > 4). The opposite is true when Ri > Ri, (Fig. 3c)

and the range of overturning turbulent scales decreases until Lo = 9LK. When

Ri = Ri, (Fig. 3b) it appears that all three length scales may reach constant values

and that Lo = 0.95LE for large St. The size of the vertical overturns is then

determined by the balance buoyancy and shear.

Given the linear relationship between the Ellison scale LE and the Thorpe scale

L_/, (Fig. 2), one would expect both length scales to have the same time evolution.

Figure 4a demonstrates that this assumption is correct. When Ri > Ri,, both scales
decrease. On the other hand, they grow if Ri < Ri,. LT,_,.- behaves similarly as

illustrated in Fig. 4b. In fact, the rms and maximal values of the density overturns

are related as LT = 3.33LT,_,z. This relation shows that, at least in homogeneous

flows, either LT or LTmaz is a good measure of the size of vertical overturns.

4. How do shear and stratification affect turbulence?

The length scale evolution of Fig. 3 shows that both mean shear and stratification

are important in determining the fate of the turbulence. The buoyancy forces

affect the turbulence by controlling the growth of the largest turbulent eddies when

Ri < Ri, or suppressing them when Ri > Ria, so one might expect the ratio of the

overturning scale (either LE or LT) to the Ozmidov scale Lo to be a function of

the Richardson number Ri for fully developed shear flows. This interpretation is

supported by both laboratory and direct simulation experiments as shown in Fig.
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large development times St. Open and closed symbols refer to the direct numerical

simulations, + to RIHV and * to Tavoularis & Corrsin (1981).

5, where the LE/Lo is plotted versus Ri. The wider scatter that is observed for the

stable case (Ri > Rio) can be attributed to the fact that L_ includes a contribution

from internal wave motions. When both LT and LE are available, it would be better

to plot LT/Lo instead of LE/Lo. Since LT was not measured in the laboratory

experiments of RIHV, we elected to plot LI_/Lo for a fair comparison of the two
data sets.

The physical interpretation of the length scale evolution, that buoyancy forces

control (Ri <_ Ri°) or suppress (Ri >Ri°) the largest turbulent eddies, suggests

that active (sheared) turbulence exists at smaller scales. Indeed, Hunt et al. (1989)

argue that the mean shear should control the fate of eddies smaller than LT for

Richardson number Ri <_ 0.5. They introduce a dissipation length scale

10 t3

L,= (12)

where w' is the rms value of the vertical velocity fluctuation, and propose that, for

homogeneous flows, it should be proportional to w'/S.

Our results, presented in Fig. 6, show a very clear relation between these two

length scales. The L, = 2.22w'/S line corresponds to the constant proposed by

Hunt et al. (1988). The largest departures from that line are observed at the
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. Ri = 0.25, 4 Ri = 0.5, • Ri = 1.

largest Richardson number (Ri = 1), which is outside the range where the relation

is supposed to be valid. The postulate of Hunt et al. (1988) that the mean shear

strongly influences the dissipative scales is consistent with the results of Holt (1990).
In these simulations, the mean shear has a strong effect on the energetics and

flux development at al] Richardson numbers. Holt (1990) found that the effect of
the mean shear diminishes somewhat at the transition Richardson number where

counter-gradient fluxes appear. The transition Richardson number is approximately

0.5 for the high Reynolds number simulations.

5. Classification of oceanic microstructure

An important problem in oceanic mixing is to determine how much mixing the
observed microstructure patches produce. Many oceanographers (e.g. Dillon, 1982,

1984; Gargett et al., 1984; Gregg, 1989) have argued that most microstructure

patches in the thermocline are the result of weak shear instabilities and inter-
hal wave straining (the continuous creation scenario advanced by Caldwell, 1983).

Gregg (1989) even proposes that the dissipation rate of kinetic energy c in the
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thermocline scales with the local internal wave field. These scenarios assume some

sort of equilibrium between production, buoyancy, and dissipation, i.e., Richardson

number must be close to the stationary value. According to these oceanographers,

most of the microstructure observations are of active turbulence which produces
vertical mixing. In this paper active turbulence refers to a state of motion where

buoyancy forces are small compared to inertial forces and, therefore, do not prevent
eddies from overturning. For homogeneous turbulence, this requires Ri < Rio.

On the other hand, Gibson (1980, 1986) proposes that most observed microstruc-

ture are the remnants of powerful but rare mixing events (the big bang scenario).
At any given scale, the velocity and density fluctuations that persist when the fluid

is no longer actively turbulent are referred to as fossil turbulence. In this case, the

measured dissipation rates e are not representative of the average dissipation rate
in the thermocline, resulting in severe underestimates of vertical diffusivities.

As pointed out by Caldwell (1983), the classification of oceanic microstructure

patches as active or fo_Jil turbulence goes beyond semantics because the generating
mechanisms for the two interpretations are different. Using the direct numerical
simulation results, the constants in Gibson's fossil turbulence model can he calcu-

lated. The two transitions of interest are: the onset of buoyancy effects or point

of fossilization and complete fossilization beyond which vertical turbulent mixing is
negligible.

5.1 Onset of buoyancy effectJ or point of foJ_ilization

The onset of buoyancy effects can be quantified in two different ways following
Gibson (1980). Both approaches use the fact that the scalar (temperature, salinity,

or density) fluctuations in a fluid with Prandtl number Pr > 1 will persist for

longer times than the velocity fluctuations; consequently, the vertical scalar profile
will retain memory of previous overturning events.

The first method examines the ratio of an overturning scale (L_, LT or LTmaz)
to the Ozmidov scale. Gibson interprets the Ozmidov scale Lo as the maximum
turbulent length scale allowed by buoyancy at the point of fossilization and relates it

to a patch size Lo _ Lp = LTmaz _ LT. This expression can be rewritten in terms

of the dissipation rate e = L2oNs _ LT2N _. As an alternate approach to estimating

the point of fossilization, Gibson (1980, 1986) argues that at transition, the largest
eddy (of size _ Lo) will overturn with a time scale N -1 and that the temperature

(or density) variance (_-_) is of the order of (O_'/Oz) 2L2o. Therefore, the rate of

destruction of temperature variance X should be _ _-_N. These relationships can
be combined with the definition of the Ozmidov scale to give e _ DCN _. Gibson

(1980, 1986) derives the proportionality constants from the shape of the temperature
gradient spectrum and overturn models to show that the following relations hold at
the point of fossilization

e = 13DCN 2 = 16.5LT2N 3 (13)

Values of the dissipation rate e less than the right-hand-side of Eq. (13) indicate

that the largest scales (of order LTm,,.) of the turbulence have been affected by
buoyancy and are no longer overturning.
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Dillon (1984) and Itsweire et al. (1986) argue from field and laboratory experi-
ments that the coefficients in Eq. (13) are too large. By using the definition of the

Ozmidov scale Lo, its relation to LE and LT determined in Section 3, and the value

of the Cox number at transition, an equation similar to Eq. (13) can be obtained

from the numerical simulations:

e = (4 ,,_ 5)DCN' = (1.4 + 0.15)LT'N s (14)

This result is in much better agreement with the constants derived from laboratory

measurements (Itsweire, 1984; Itsweire et el., 1986):

e = (5.5 + 2)DCN 2 = (1.4 + 0.2)LT2N s (15)

than with Gibson's model (Eq. 13). From an energetics point of view, the e = (4 ,_

5)DCN 2 is equivalent to a mixing efficiency of 0.20 ,v 0.25.

5.f, Complete fossilization

Once the fossilization process starts, laboratory experiments (StiUinger et al,

1983; Itsweire et al, 1986) show that all turbulent scales are suppressed by buoy-

ancy in a fraction of a Brunt-Vgisglg period. Motion at all scales is wavelike and
has been characterized as saturated internal waves (Gibson, 1980). In this state of

motion, little vertical mixing takes place. Gibson refers to this transition as com-

plete fossilization or buoyant-inertial-viscous transition, i.e., a state of fluid motion
where buoyancy, inertial, and viscous forces are equal. As stated in Section 3, this
transition can be characterized by the ratio of the Ozmidov scale to the Kolmogorov

scale. Using the definitions of the length scales, this ratio Lo/LK can be expressed

in terms of a minimal dissipation rate, necessary for the existence of turbulence:

= 30vN 2 (16)

This criteria is in qualitative agreement with laboratory observations without shear

e = (15 -._ 21)vN 2 (Stillinger et al, 1983; Itsweire et al, 1986) and with shear
= 16vN 2 (RHIV and RIHV). For the present data, the Lo = 9Lzc relation of

Section 3 can be rewritten as:
= 19vN 2 (17)

which falls within the range of experimental values. It is not clear at this point

whether the ratio e/vN 2 is a universal constant or depends on Reynolds number

or the type of turbulence (homogeneous vs. inhomogeneous). More numerical and

experimental data are needed to answer this question.

5.3 Hydrodynamic PhaJe Diagram

The relations derived in the preceding sections, Eqs. (14) and (17), can be used

to describe the evolution of turbulence in a stratified shear flow in terms of a Hydro-

dynamic Phase Diagram (see Fig. 7). This diagram is another way to describe the

length scale evolution of Fig. 3. It offers the advantage of using quantities that can
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be directly measured by vertical profilers in the ocean. The horizontal axis e/vN 2

is a Reynolds number based on the Ozmidov scale and an associated velocity scale

(e/N)_ and the vertical axis e/DCN 2 is the ratio of the dissipation rate of kinetic

energy to the dissipation rate of potential energy, which Gibson (1986) interprets

as a turbulent Froude number Frl. The evolution of turbulence can be interpreted

as follows. The upper right quadrant is the active region, the lower left quadrant is

the .fossil region, while the lower right quadrant is a mixture active+fossil. When

Ri < Rio (Q)), all data lies in the active region as expected, and when Ri > Ri, (0,

_7), the turbulence undergoes a transition from active to a mixture active +.fossil to

completely/ossil. This classification can be related to the length scale evolution

described in Fig. 3 as follows. Let us consider the case where Ri = 0.37 (see Fig

3c). When St ._ 2.8, Lo = 0.95LE and the turbulence undergoes transition from

the active region to the active-/-.fossil region (see ffl symbols in Fig. 7). Later, when

St ._ 6.4, Lo = 9LK, the turbulence is completely suppressed and enters the fossil

region. The case of the stationary Richardson number (A) is interesting because

the data lles at the edge of the transition region where the flux Richardson num-

ber R! = B/P of the turbulence is a maximum. Under steady-state conditions,

e/DCN 3 can be interpreted as an inverse mixing efficiency.

6. Eddy diffusivity models

If the time rates of change of turbulent kinetic energy and potential energy (see

Equations 3 and 4) are small compared with dissipation and production (near-steady

state), the vertical eddy diffusivities Kp and K,,_ can be easily estimated using the
following methods.

6.1 Dissipation techniques

The dissipation technique makes use of the kinetic energy equation which, under
steady-state assumptions, reduces to

P=B+_, (18)

is often used to estimate K,_ in the atmospheric boundary layer (e.g Busch, 1977).

After introducing the flux Richardson number RI = B/P which is a measure of the

mixing efficiency of the flow, Eq. (18) can be rewritten in two ways, depending on
whether one wishes to estimate K,_

or Kp:

K,_, = P/S 2 - 1 e
1 - R! S 2 (19)

Kp = B/N 2 = R! e
1 - R! (20)

Figure 8 shows that the assumption of production equal to dissipation (solid line)

provides a good estimate of K,,_ for Richardson numbers slightly larger than the

stationary value. Under these conditions, the buoyancy flux and the time rate of
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FIGURE 7. Hydrodynamic Phase Diagram for the evolution of turbulence in

stably stratified flows. The two horizontal lines e = (4, 5)DCN 2 mark the onset of

buoyancy effects, while the vertical line e = 19vN 2 represents the point where the

buoyancy flux goes to zero; O Ri = 0.0575; A Ri = 0.21; O Ri = 0.37; _7 Ri = 1.

Time increases from right to left.

change of kinetic energy cancel each other out, and production equals dissipation.
When Ri = Ri,, the buoyancy flux B adds a 20% contribution and K,,_ _ 1.2_/$ 2.

For Richardson numbers small or large compared to the stationary value, the time

rate of change of the kinetic energy becomes of the same order as production and

dissipation and the model becomes invalid. However, K,,_ can still estimated within
a factor of 2 from Eq. (19).

Similar results are obtained when the vertical eddy diffusivity is estimated with

Eq. (20); on average Kp = 0.16_/N 2. However, the low Reynolds number simula-

tions (dosed symbols of Fig. 9) appear to have a lower mixing eflldency (R! '_ 0.09)

than the high Reynolds number simulations (open symbols in Fig. 9). For these
simulations, the mixing efficiency R/_ 0.20 is a maximum for the stationary case,

yielding Kp _ 0.25e/N 2. When Ri = 0.075 and Ri = 0.37, Kp = 0.16e/N 2 is an

excellent approximation. The formula proposed by Osborn (1980) Kp = 0.20e/N 2
is valid within -t-20% for the range of Richardson numbers 0.075 < Ri < 0.37 when

stratified turbulent shear flows are slowly evolving, i.e., the time rate of change

of kinetic energy is still small compared to the turbulent production P and the

dissipation e.
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FIGURE 8. Comparison of the true momentum eddy diffusivity Km to its estimate

e/S 2 using the dissipation technique for various Richardson and Reynolds numbers.

Open symbols: R_ = 140, O Ri = 0.075, A Ri : 0.21 = Ri,,D Ri = 0.37;

+ R_ : 76, Ri = 0.15 = Ri,; closed symbols: R_ = 32, • Ri = 0.0575, • Ri :
0.0875 = Rio, • Ri = 0.1125.

6._ The Osborn-Coz Model {197_)

Under the same steady-state assumptions, Osborn and Cox (1972) proposed that

vertical eddy diffusivity Kp can be estimated from the potential energy (or temper-
ature) equation (Eq. 4) as:

Kp = DC (21)

Osborn and Cox (1972) originally proposed this diffusivity model for temperature

(the major contributor to the density variation in the thermocline), but it can

extended to other scalar variables such as salinity and density. Figure 10 shows

that the Osborn-Cox model works best (as expected) near Rio (triangle and plus

symbols). Otherwise, this model estimates the vertical eddy diffusivity Kp within

4-50% for 0.075 < Ri < 0.37 in the large Reynolds number simulations. Away from

steady-state conditions (Ri = 0.075 or 0.37, for example), the time rate of change
of potential energy can be about 4-0.30B.

Equations (20) and (21) can be combined to give an alternate expression for the
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FIGURE 9. Comparison of the true vertical eddy diffusivity Kp to its estimate

e/N 2 using the dissipation technique for various Richardson numbers, symbols as

in Fig. 8.

point of fossilization described in section 5.1:

1- Rs (22)- DCN 2
R!

when it is reasonable to assume that near-steady state conditions exist. The ob-

served mixing efficiency R! = 0.20 at Ri° yields e = 4DCN 2 in good agreement with

Eq. (14). In contrast, Gibson's fossil turbulence model (Eq. 13) implies that the

mixing efficiency at fossilization (transition from active turbulence to active+fossil

turbulence) is only 7%, a value much lower than expected.

T. Conclusions

Direct numerical simulations of homogeneous turbulence in stably stratified shear

flows by Holt (1990) confirm the length scale evolution observed in laboratory exper-

iments (Stillinger et al, 1983; Itsweire et al, 1986; Rohr et al, 1988). Furthermore,
these simulations show that when the Richardson number Ri is less than the sta-

tionary Richardson number Ri°, the turbulence grows at all scales, the growth rate

being a function of Richardson number. When Ri = Ri,, there is a net balance
between production, buoyancy, and dissipation. The vertical overturns measured by

the Thorpe scale Lr remain constant in time, and the mixing efficiency measured
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FIGURE 10. Comparison of the true vertical eddy diffusivity Kp to its estimate
DC using the Osborn-Cox technique for various Richardson numbers, symbols as
in Fig. 8.

by the flux Richardson number Rf is between 0.20 and 0.25. Finally, for stable

conditions, (Ri > Rio), the large eddies of the turbulence are affected by buoyancy
when e = (4 ,,_ 5)DCN 2, and the buoyancy flux goes to zero when e = 19vN _. For

Ri <_ 0.5, the mean shear controls the size of the dissipative scales as predicted by
Hunt etal. (1988).

Estimates of the eddy diffusivities using dissipative techniques give Arm : 1.2e/S 2
and Kp = O.16e/N _ in good agreement with the measured diffusivities when the

Richardson number is close to the stationary value Ri,. Under the same condi-

tions, the Osborn-Cox model (1972) can also be used to estimate the vertical eddy
diffusivity as Kp = DC. When considering a broad range of Richardson numbers

(0.0575 < Ri < 0.37), the dissipation technique formu]a proposed by Osborn (1980),

Kp = 0.2e/N 2, provides a more accurate estimate of the vertical diffusivity (-I-20%)
than the Osborn-Cox model.

Acknowledgements

We wish to thank Claude Cambon, Carl Gibson and Derek Stretch for fruitful

discussions during the 1990 CTR Summer Program. ECI is very grateful to the

CTR summer program for making this work possible. JRK, JHF and SEH were

funded by the Office of Naval Research. C-L Lin provided assistance with the



Stably stratified sheared turbulence and oceanic rnizing 179

post-processing of the database on the UCSD Cray.

REFERENCES

BUSCH, N. E. 1977 Fluxes in the surface boundary layer over the sea, In Modeling
and Prediction of the Upper Layers in the Ocean (Ed. E. B. Kraus) pp. 72-91,

Pergamon.

CALDWELL, D. R. 1983 Oceanic turbulence: Big bangs or continuous creation?.

J. Geophys. Res. 88, 7543-7550.

DILLON, T. M. 1982 Vertical overturns: A comparison of Thorpe and Ozmidov

length scales. J. Geophys. Res. 87, 9601-9613.

DILLON, T. M. 1984 The energetics of overturning structures: Implications for the

theory of fossil turbulence. J. Phys. Oceanogr. 14, 541-549.

DOUGHERTY, J. P. 1961 The anisotropy of turbulence at the meteor level. J.

Atraos. and Terrestrial Physics. 21,210-213.

ELLISON, T. H. 1957 Turbulent transport of heat and momentuln from an infinite

rough plane. J. Fluid Mech. 2, 456-466.

GARGETT, A. E., OSBORN, T. R. _ NASMYTH, P. W. 1984 Local isotropy and

the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231-280.

GERZ, T., SCHUMANN, V. &5 ELGHOBASHI, S. E. 1989 Direct numerical sim-

ulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200,

563-594.

GIBSON, C. H. 1980 Fossil temperature, salinity and vorticity in the ocean. In

Marine Turbulence (Ed. J. C. T. Nihoul) pp 221-258, Elsevier.

GIBSON, C. H. 1986 Internal waves, fossil turbulence and composite ocean mi-

crostructure spectra. J. Fluid Mech. 168, 89-117.

GREGG, M. C. 1989 Scaling turbulent dissipation in the thermocline. J. Geophys.

Res. 94, 9686-9698.

HOLT, S. E. 1990 The evolution and structure of homogeneous stably stratified
sheared turbulence. Ph.D. Dissertation, Department of Civil Engineering, Stan-

ford University.

HOLT, S. E., KOSEFF, J. R. &_ FERZIGER, J. H. 1990 The evolution of turbulence

in the presence of mean shear and stable stratification. In Seventh Symposium
on Turbulent Shear Flows, Stanford. Springer-Verlag, in Press.

HUNT, J. C. R., STRETCH, D. D. & BRITTER, R. E. 1988 Length scales in stably
stratified turbulent flows and their use in turbulence models. In Stably Stratified

Flow and Dense Gas Dispersion (Ed. J. S. Puttock) pp. 285-321, Clarendon.

ITSWEIRE, E. C. 1984 Measurements of vertical overturns in a stably stratified

turbulent flow. Phys. Fluids. 27, 764-767.



180 E. C. ItJweire, S. E. Holt, J. R. KoJeff f_ .1. H. Ferziger

ITSWEIItE, E. C., HELLAND, K. N. & VAN ATTA, C. W. 1986 The evolution

of grid-generated turbulence in a stably stratified fluid. J. Fluid Mech. 162,
299-338.

OSBORN, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipa-
tion measurements../. Phys. Oeeanogr. 10, 83-89.

OSBORN, T. R. & Cox, C. S. 1972 Oceanic finestructure. Geophys. Fluid Dyn.
3, 321-345.

OZMIDOV, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Ivz.
Atm. Ocean Physics. 1,853-860.

ROGALLO, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA
Tech. Memo. 81515.

ROHR, J. J., HELLASD, K. N., ITSW_.IR_., E. C. & VAN ATTA, C. W. 1987 Tur-

bulence in a stably stratified shear flow: A progress report. In Fifth Symposium

on Turbulent Shear Flows, (Eds. F. Durst etal.), pp 67-76, Springer-Verlag,
New York.

ROHR, J. J., ITSWEIRE, E. C., HELLAND, K. N. & VAN ATTA, C. W. 1988
Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech.
195, 77-111.

STILLINGEIt, D. C., HELLAND, K. H. &VAN ATTA, C. W. 1983 Experiments on
the transition of homogeneous turbulence to internal waves in a stratified fluid.
J. Fluid Mech. 131, 91-122.

THORPE, S. A. 1977 Turbulence and mixing in a Scottish loch. Phil Trans. R. Soc.
Lond. A286, 125-181.



Center ]or Turbulence Research 181

,,o N 9 2 " 3 0 6 6 0
b

A numerical evaluation of the dynamical /-_

systems approach to wall layer turbulence

By Gal Berkooz a

This work attempts to test predictions based on the Dynamical Systems approach

to Wall Layer Turbulence. We analyze the Dynamical Systems model for the non

linear interaction mechanism between the coherent structures and deduce qualita-

tive behavior to be expected. We then test for this behavior in data sets from

D.N.S. The agreement is good, given the sub optimal conditions for the test. We

discuss implications of this test and work to be done to deepen the understanding

of control of turbulent boundary layers

1. Introduction

The Dynamical Systems approach to wall region turbulence is a methodology

for deriving low dimensional Dynamical Systems (which are systems of O.D.E's)

to describe the interaction of Coherent Structures in the near wall region. Co-

herent Structures are defined through the Proper Orthogonal Decomposition (to

be described later). See Aubry et al. (1988) and Berkooz et al. (1990-1). The

most significant achievement of the Dynamical Systems approach to date was sug-

gesting a non-linear interaction mechanism that produces the so called "bursting"

observed in experiments (Kline et al. 1967, Kim et al. 1970, Corino and Brodkey

1969). These events were also observed in numerical simulations of wall bounded

flows (Moin and Kim, 1985). The reaction to the Dynamical Systems Approach in
the Turbulence community ranged from enthusiasm to technical criticism to basic

objections. Technical criticism, like Moffat's observations (Moffat 1990), were in-

strumental in furthering our understanding of the results (Berkooz et al. 1990-2,

Holmes et al. 1990). Basic objections stemmed from previous experience where in-

teresting dynamical behavior of Dynamical Systems models was due to the process
which led to the Dynamical System (abbreviated D.S. from now on), and not to

physical content of the equation they were modeling. The celebrated Lorenz system

is such an example, the original problem it started off as was the Benard convection

problem.
This work attempts to establish a connection between the D.S. approach and the

"real world" (i.e. computer D.N.S.) by showing that the D.S. models predict non

trivial behavior of the wall layer region that may be observed in D.N.S.

There are technical and fundamental difficulties in establishing this connection. A

technical difficulty facing a detailed comparison is that the spanwise periodic domain

used in the D.S. is small compared to most full size wall bounded D.N.S. In addition

1 Center for Applied Math. Cornel] Univ. Ithaca, N.Y. 14853
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the D.S. concentrate on a series of events in time, while spatially there is only one

event. A full D.N.S. has several events occurring at different spatial locations,

sometimes with overlap. This problem was overcome by using the "Minimal Flow

Unit of Near Wall Turbulence" studied by Jimenez and Moin (1990). The minimal

flow unit is the smallest computational domain, in a channel flow computation that

would sustain a turbulent flow. This flow is not ideal for our purpose. Two point

velocity correlation functions are not reproduced accurately, thus suggesting that

the structures (in a P.O.D. sense) observed will not be the same as a real flow. The

effects of the outer layer are not well produced above y+ = 40, as will be outlined

later; this effect is of importance to the D. S. models. The box sizes used in the

minimal flow unit are smaller then the boxes used in previous studies of D.S. (100 +

for the minimal flow compared to 333 + for the D.S. The eigenfunctions we had

were not computed for this flow. They were derived from a large flow box D.N.S.

(see Moin and Moser 1989). This caused us to interpolate the eigenfunctions, thus

getting a less then optimal basis. The question of interpolating eigenfunctions, or

two point correlation functions, will be addressed in the sequel. The main advantage

of the minimal flow unit is that it produces well defined events which is in the spirit

of the events produced by the D.S. Overall these data sets were the most readily
available and therefore used.

Determining what will constitute a connection is a fundamental question. We

suggest that the D.S. model for the non linear interaction mechanism that pro-

duces the burst will be analyzed to give qualitative predictions. The predictions

will be compared to behavior of the corresponding real world objects to see what

parts of the model perform accurately and what parts need improvement. A more

quantitative study (i.e. measuring the short time tracking capability of D.S.) is

underway.

This work is organized as follows: In section 2. we describe the essential ingre-
dients of the D.S. approach. We describe the non linear interaction mechanism

suggested to be the mechanism for the production of bursts. Based on the descrip-

tion we deduce some qualitative predictions that will be tested in the sequel. In

section 3. we describe the numerical procedures developed in this work to test the

predictions outlined in section 2. and the results of the comparison. Section 4.

contains a discussion, conclusions, describes the relevance of this work to control

applications, and suggests further topics for work and their contribution. Section

5. contains acknowledgements.

2. The D.S. approach and the Non Linear Interaction Mechanism.

The D.S. approach to the wall layer region of the turbulent boundary layer re-

lies on four distinct elements. These are: The Proper Orthogonal Decomposition,
Galerkin projection or truncation, a model to describe the feedback of the evolv-

ing coherent structures on what is effectively the local mean velocity profile, and

a Smagorinsky type subgrid scale model to model the loss of energy to the unre-

solved modes. For a more thorough exposition the reader is referred to Aubry et

al. (1988), Berkooz et al. (1990-1) and Berkooz et al. (1990-3).
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The P.O.D has been described in several references. See Lumley (1970) for the

most comprehensive discussion. For our purpose it will suffice to give the following

necessary and sufficient condition which characterizes the P.O.D. Given a random

signal (assume one dimensionality for simplicity) u(z,t) : [a,b] --* _ such that

u(z,t) E L2([a,b]) for every t. The P.O.D gives an optimal basis for a represen-

tation of the signal in the following sense. Let {_bi(z)}_l be the P.O.D basis and

{_bi(z)}_l is any orthonormal basis s.t (equality in L 2 sense)

oo oo

uC ,t) = a, = Z
i=1 i=l

where ai(t) and hi(t) are random coefficients. If < • > denotes the time average

then _ ,_

< >>_ < >
i=1 i=1

for every n. Recall that in such a representation < aia* > represents the average

energy content of the i-th mode. Hence for a given number of modes the P.O.D

basis captures the most energy. This is due to the fact that the sum of the n

largest eigenvalues of an operator are greater than the sum of any n elements on

the diagonal w.r.t any basis of the functional space. See Holmes et el. (1990). For

an application of the P.O.D to the wall region in a pipe flow see Herzog (1986). For

an application in a D.N.S see Moin and Moser (1989). The last two sources discuss

the application of the P.O.D in three dimensions, where two of the directions are

homogenous, which is the case we are interested in.
Galerkin projection, or truncation, is a tool in common use in C.F.D. Basically

one picks a finite number of basis functions and gets dynamical equations for their

amplitudes from the equations of motion. It is the core of a spectral method code

and in a different sense, for a finite difference code. In our context we perform the

same operation, the difference being that we retain a very small number of modes,

and instead of picking a numerically convenient basis we use a physically relevant

one.
The feedback of the evolving coherent structures on the "local" mean velocity

profile is given by the formula:

1 L _' 2 z_
- < uau2 > dz2 -I- u--z-(x2 - ) (I)= ,,

where H is a channel half width. See Tennekes and Lumley pg 150. It is derived

using time stationarity of the flow. It is then used when in place of ul and u2

one puts the dynamical values of these quantities. This proves to be an important

element since it provides a feedback that prevents the dynamical coefficients from

growing indefinitely as would be the case if one was to put the average value of the

mean velocity profile.

The loss to higher modes is modelled by a Smagorinsky type subgrid scale model.

The value of the Smagorinsky constant for a given truncation may be computed
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in terms of the eigenfunctions and eigenvalues to within an order 1 number. See

Berkooz et al. (1990-2). The order 1 number gives rise to a parameter in the

problem called the bifurcation parameter c_. This parameter is used to tune the

D.S. to obtain physically relevant behavior, corresponding to proper modeling of
loss to higher modes.

At this point we should remark that most models studied by our group at Cor-

neU contained no streamwise variation in the representation of the velocity field.

It has been shown (Berkooz et al. 1990-2) that this functional subspace has some

nice and useful properties. Recently, however, N. Aubry and her student S. Sanghi,
have studied higher dimensional models with streamwise variation. See Aubry and

Sanghi (1989). Their results show that the essentials of the dynamics described in

previous reports persist in these higher dimensional models. A point of nomencla-
ture, we will be discussing dynamics in the functional space, which is of 10 real

dimensions if 5 structures are resolved, or the regular physical, 3 dimensional space
where the fluid flows. The reader can distinguish between them from the context.

After performing modeling described above and analyzing the resultant D.S. using

techniques from bifurcation theory and dynamical systems theory, the following
non linear interaction mechanism is suggested. The interaction of the coherent

structures is dominated by a spherical type heteroclinic attractor. One can visual

this mechanism as follows, imagine a sphere in the real invariant subspace of phase

space. On it there are distinct patches that are "pseudo-attractors", i.e. sets which

are capable of attracting the dynamics for a while but points eventually escape

them with a small perturbation present. The simplest examples of such systems

were studied for the case of the "pseudo attractor" being a hyperbolic fixed point.
See Holmes and Stone (1990). In the D.S. of the wall region it is the coupling with

the outer layer that provides the perturbation term. The behavior of the wall region

may be envisioned as a point travelling close to the sphere, lingering for a while in
a well defined area, this corresponds to periods of quiescent behavior of the fluid.

The point then jumps toward a new attracting patch, this corresponds to the burst

and sweep, until the point settles for a while around a new point, only to start the
cycle again - see figure 4.

The attractors described in Aubry et al. (1988) and Berkooz et al. (1990-1) are
specific cases of this more general kind of attractor. They consisted of a circle of
fixed points, where bursts occurred as jumps from one side of the circle to the other.

However, if one wants to describe the general type of attractor that one will find

one has to talk about a sphere. In higher dimensions the jumps may occur between

different parts of the sphere as different heteroclinic structures may coexist and may

be intertwined, thus allowing more freedom in the destination of the jump. This

formulation has two advantages. It is independent on the number of modes chosen,
and does not produce behavior that might be considered over simplified.

The pressure term that represents the coupling to the outer layer serves to per-
turb the points and thus prevent them from being attracted to a quiescent state

indefinitely. The dynamics of the bursting are thus determined by the dynamics of

the large scale structure where the outer layer is a constant source of instability.
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A remarkable observation of Armbruster Guckenheimer and Holmes is that these

types of attractors are structurally stable (in the D.S sense) in the context of sys-

tems with symmetry like that of the system derived from a boundary layer. This

implies that the it is possible to meet such attractors for a non negligible set in

"parameter space", and that the occurrence of such dynamical features is robust.

The original result was proven for 2 dimensional systems. The principle for gen-
eralization to higher dimensions can be deduced from the original proof. Recently

Holmes and Campbell (1990) and Berkooz (1990-4) have shown generalizations to

higher dimensions.
Based on the model described above we can make the following predictions:

1. The p.d.f of the radius of in functional space of the dynamics should have a

well defined peak (for a given flow). This is due to the basic conjecture regarding

the shape of the attractor.
2. The distribution of points in phase space should be such that intervals of of

time corresponding to the quiescent periods of the flow should be clustered together.

This is from the conjecture that the quiescent periods correspond to motion around

the "pseudo-attractors" around the sphere .
3. One should be able to correlate between streaky motion in phase space and

bursting periods.

3. Numerical Methods and Results

3.1 The Data Set Used.

As mentioned earlier the data sets used were those studied by Jimenez and Moin.

The simulation was run so as to keep a constant mass flux through the channel by

varying the pressure drop. A Reynolds number was compiled based on channel half
width and the center line velocity of a parabolic velocity profile which the same

mass flux. Specifically we had a Reynolds number of 2000. The friction velocity

was approximately 1/22 of the centerline velocity. The computational domain was

_r x 2 x 0.351r, streamwise, wall normal and spanwise respectively. Our realizations

were spaced 0.625 external time units apart, or 3 wall time units. We had 352

realizations totalling 220 external units, or 1056 wall units. The characteristic time

between bursts reported by Jimenez and Moin is approximately 100 external time

units, thus the flow is expected to contain two bursts. See fig. 1, which contains

the time history of the wall shear stress. An increase in the wall shear is associated

with the bursting process where low momentum fluid from the near wall region is

exchanged with high momentum fluid from higher up, thus increasing the wall shear

stress

3._ The Eigenfunctions and the Projection.

The eigenfunctions used in this study are based on eigenfunctions from a full

channel D.N.S. This posed a requirement to fabricate eigenfunctions for the specific

box used. The procedure applied was to interpolate the eigenfunctions, where the

interpolation is performed according to wave lengths in wall variables. This proce-

dure seemed to produce reasonable results for this case. This is due to the fact that
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the eigenfunctions have a distinct shape, fairly robust as a function of wave number.

As R. Moser suggested, it is preferable to interpolate the 2 -point velocity correla-
tion tensor and recompute the eigenfunctions. This will also solve the problem that

interpolating is not valid for the second eigenfunction, due to loss of orthogonality.

The question of interpolating eigenfunctions, or the two point velocity correlation
tensor, will be addressed in the sequel.

We decided to choose y+ = 39 as the upper bound for the modeled domain, that
gave us 39 grid points. The eigenfunctions were then normalized. The normalized

eigenfunctions were used in the study. See fig 5.a, 5.b, 5.c for the streamwise,
normal, cross stream components of the eigenfunctions.

Once the eigenfunctions were computed we had to determine which of them cor-

respond to large scale structures. The criterion chosen was that they should have

such a shape as to be able to extract energy from interaction with the mean flow (i.e.
a positive linear coefficient in the D.S.) and they should also have such a shape that

their energy cannot grow without bound, (negative cubic). This selection ruled out
eigenfunctions 5,6,7. One can also see by observation that they have fine structure

that would generate scales which would not be considered large scale. We also chose

not to include the first eigenfunction in the analysis since its average did not go to

zero during the period simulated. As 3imenez and Moin point out a long averaging
period is needed for the statistics to stabilize. We thus are left with three complex

or 6 real variables. See figures 6.a, 6.b, 6.c for the traces used in this study.

$.$ The p.d.f of the Radius in Phase Space.

The p.d.f of the radius in phase space was computed. See figure 2 for the result.

The total amount of points was divided into 25 bins. Note that the p.d.f has a

very well defined peak. More over it seems to strongly suggest an exponential tail.

This is quite remarkable as Holmes and Stone (1990) predicted an exponential tail
for the distribution of passage time between bursts. It is conceivable that a similar

analysis for the distance from the invariant heteroclinic attractor will also give an

exponential tail since the passage time and the distance from the attractor are very

intimately linked. (see Holmes and Stone 1990)

$._ Distribution in Phase Space.

Determining whether points ill phase space are clustered together of form a

streaky structure is a tricky question. The way we decided to compare "clusters"

versus "streaks" is as follows. Given a set of n points in phase space we create a list

of distances between all possible pairs dl... d! where f = n(n - 1)/2. We would
then compute the flatness factor of this list. A higher flatness would indicate more

of a streaky group of points. It is also a dimensionless quantity. The following table
summarizes our findings.
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t: 20 + - 40 + flat: 2.35 behavior: small burst

t: 55 + - 75 + flat: 1.69 behavior: quiescent

t: 90 + - 110 + flat: 2.09 behavior: small burst

t: 130 + -150 + flat: 2.61 behavior: start of big burst

t: 165 + - 185 + flat: 2.81 behavior: peak of big burst

t: 200 + - 220 + fiat: 2.35 behavior: relaxation after big burst

187

We see that there is a correlation between the flatness indicator and the wall shear

stress, for the few points we have. Another indicator of dynamical activity is the

velocity in phase space. Based on the interaction mechanism described previously

one would expect the velocity in phase space to be higher at bursting periods.

Figure 3, which shows the velocity in phase space as a function of time shows such

a correlation.

4. Summary and Discussion

This study was intended to evaluate numerically qualitative predictions of the

Dynamical Systems approach to wall layer turbulence. The predictions were rea-

sonably confirmed, considering the amount of data available and the basis used.

The main achievement of the D.S. approach as it comes to light in this study, is

that starting with time average quantities (2-point velocity correlations) one is able

to make, through the proposed model for non linear interaction of coherent struc-

tures, predictions about dynamical behavior of large scale structures and validate

them numerically.

This study suggests a follow up in several areas. First it would be desirable

to perform this study on a sample size significantly larger, like the ones used by
Jimenez and Moin. Better eigenfunctions could also contribute. Second, it would

be important to study the variation of the eigenfunctions and the two point velocity

correlation as the geometry changes. One could start with different box sizes for the

same geometry and go on to a curved channel etc. This is an important question

since as seen by the P.O.D the two point correlation contains important structural

information.

This study encourages tile pursuit of a practical control scheme for drag reduction

or increase of mixing. It confirms our basic assumptions about the relation of the

dynamical systems objects we have dealing with and real world objects (like wall

shear stress). If the control scheme suggested, i.e. holding the dynamics as close as

possible to the hyperbolic points, or the pseudo attractors, succeeds, one will indeed

reduce drag. We still are pursuing the measurement of the short term tracking. The

analysis performed here can be applied to existing drag reduction techniques, i.e.
riblets or the control scheme studied by Moin, Kim, and Choi (1989). It would be

interesting and important to gauge the effects of those controls on the dynamics

and see whether from a dynamical point of view they share the same principals.
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Resonant instability of supersonic sheht" layers -

By C. K. W. Tam I AND S. K. Lele 2

A computer simulation of possible resonant instability of a supersonic shear layer

is carried out. The resonance of two acoustic duct modes of the flow induced by

periodic Mach waves generated by a wavy wall is sought. Results of the simulations

are reported. Simulations are unable to document a resonant instability and the

mixing characteristics remain unchanged. Possible weakness of the present simula-

tions are discussed. A second set of simulations involving a mixing layer separating

a supersonic and a subsonic stream were performed. A wavy wall placed adjacent

to the supersonic stream to produce a set of periodic Mach waves terminating at

the shear layer is modelled. The entire flow field is similar to that of an imperfectly

expanded supersonic jet discharging into a subsonic coflowing stream for which en-

hanced mixing due to the onset of screech (feedback instability) is known to occur.

The purpose of these simulations is to see if enhanced mixing and feedback insta-

bility would, indeed, take place. Some evidence of feedback osciUations is found in

the simulated flow.

1. Introduction

Recent measurements by Ikawa _ Kubota (1975), Bogdanoff (1983), Papamoschou

& Roshko (1986, 1988), Chinzei et al. (1986), and Samimy & Elliot (1990) indicate

that the mixing rate of shear layers decreases drastically as the convective Mach

number becomes supersonic. This is a great detriment for certain types of applica-

tions such as supersonic combustion where faster mixing is not only desirable but

also a necessity. In the past, various trailing edge mixing devices have been tried

(see e.g., Papamoschou, 1989). However, so far no success has been reported.

Papamoschou & Roshko were the first to demonstrate that a strong correlation
exists between the mixing rate of shear layers and the maximum growth rate of

the instability waves of these flows over a wide range of subsonic and supersonic

convective Mach number. The good correlation was reconfirmed by the more recent

calculations of Ragab & Wu (1989), Zhuang et al. (1988, 1990), Jackson & Grosch

(1989), and Sandham _ Reynolds (1989) using improved theoretical models. In

the newer works, spatial instability growth rate was used instead of the temporal

growth rate, and the wall effects were included. It is known that the instability

growth rate of shear layers decreases with an increase in convective Mach number,
which is a measure of the effect of compressibility. A simple interpretation of the

strong correlation between shear layer spreading rate and instability growth rate

1 Florida State University

2 Stanford University
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is that instability is the primary mechanism of mixing in this class of flows. The

reduction in instability growth rate with an increase in convective Mach number,

therefore, necessarily results in a lower mixing or spreading rate.

In a recent paper, Tam & Hu (1989a) suggested the use of resonant instability

to destabilize the flow of ducted supersonic shear layers. When a shear layer is

confined inside a rectangular duct, its motion is invariably coupled to the acoustic

modes of the ducted flow (see Tam & Hu, 1989b). The resonant instability idea

is to introduce a periodic Mach wave system in the supersonic flow by means of a

wavy channel wall. The wave length of the wavy wall is carefully chosen so that it

allows two of the acoustic wave modes of the ducted flow to interact forcing each
other to grow. This resonance condition requires the wave number of the Mach

waves to be equal to the difference of the wave numbers of the two acoustic modes.

Using a multiple-scales perturbation analysis, Tam & Hu showed that significant

growth compared with those of the natural instability waves of the shear layer can

be realized over a wide range of flow conditions and frequencies.

The purpose of this work is to perform a numerical simulation of resonant instabil-

ity of supersonic shear layers. The primary objective is to see if resonant instability
does occur in a simulated experimental environment other than the idealized con-

dition of perturbation analysis. Such simulated experiments would also provide

quantitative information as to whether such resonant instability has an impact on
the shear layer spreading rate.

Another objective of this work is to test the feasibility of using feedback instability

as a mechanism for mixing enhancement when the flow on one side is supersonic

and the other side is subsonic. The idea is based on the well known jet screech

phenomenon of imperfectly expanded supersonic jets. Jet screech is driven by a
feedback loop. The energy of the feedback loop is derived from the downstream

propagating instability waves in the shear layer of the jet. The instability waves are

initiated at the nozzle lip by acoustic excitation. As the instability waves propagate

downstream, their amplitudes grow. At a distance of about four to five shock

cells from the nozzle exit, they interact strongly with the quasi-periodic shock cell

structure in the jet plume. The interaction generates strong acoustic waves, part of

which propagate upstream outside the jet where the flow is either subsonic or at rest.

Upon reaching the nozzle lip, these acoustic waves excite the shear layer leading to

the further generation of instability waves. This completes the feedback loop. For

a mixing layer housed inside a rectangular channel separating a supersonic and a

subsonic stream, the flow condition is similar to that near the exit of supersonic

jet discharging into a coflowing subsonic stream. The equivalent of a quasi-periodic

shock structure may be generated by a wavy wall on the supersonic side of the

shear layer. In such a flow configuration, it is even possible to control the feedback

frequency by selecting an appropriate wave length for the wavy wall. This latitude

allows one to tune the feedback frequency to coincide with that of the most unstable

wave of the shear layer, thus obt_ning maximum mixing enhancement.
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FIGURE 1. Schematic diagram of flow configuration for direct numerical simulation

of resonant instability.

2. Simulation of Resonant Instability

Computer simulations of resonant instability of a supersonic shear layer were

carried out. The computational procedure and boundary conditions are documented

earlier by Lele (1988, 1989). The inviscid walls, inflow perturbations, and the Math

waves due to the wavy walls were introduced following the details described by

Poinsot $z Lele (1989). The inflow perturbations used the linear stability eigen

functions calculated by Tam & Hu, and the Mach wave solutions were used for

modeling the wavy wall. The flow configuration is shown in Figure I. The numerical

values of the parameters chosen are:

M1 (Mach number of fast stream) = 2.0

M_(Mach number of slow stream) = 1.2

where c and _ are the amplitude and wavelength of the wavy wail.

Two acoustic duct modes are introduced at the inflow boundary of the channel

with a peak amplitude of 1% relative to the fast stream velocity. These modes have a

nondimensional frequency of wH/ul = 6.0. This first duct mode has a wave number

of klH = 12.39. According to linear theory, this wave mode has a subsonic phase

velocity relative to the slow stream so that the eigenfunction is confined mainly to
the fast stream. The second duct mode has a wave number k2H = -4.68. The

eigenfunction of this wave mode spreads over the entire channel. The mixing layer
is assumed to have an initial velocity profile in the form of the hyperbolic-tangent

function with a vorticity thickness equal to 10% of the channel height. To attain

resonance, the wave number of the wavy wall, kM, is taken to be equal to (kl - ks).

The computation domain consists of a 2 x 16 rectangle divided into a 150 × 500 cells

(the half channel height is the length scale for non-dimensionalization). As the

simulation progresses, the pressure and other flow variables are monitored at eleven

equally spaced stations in the flow direction (the first and last stations are at the
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inflow and outflow boundary respectively) at levels j = 20, 110, and 130. Level

j = 1 corresponds to the mean position of the bottom wall whereas the top wall is
at j = 151.

Figure 2 shows the pressure variations as functions of time (time unit -- 1.007 H/u1 )

at the 11 z-stations at level j = 110. The bottom one corresponds to that at the

inflow boundary (z = 0, i = 1), and the top one corresponds to that at the outflow

boundary (z = 16, i = 501). These stations are dose to the shear layer. As a

result, the pressure fluctuations in the downstream stations are dominated by the

shear layer instability wave. In Figure 2 the distinct wave front (indicated by a

straight line) is the wave front of the instability wave. The propagation velocity, V,

of the wave front as calculated from this figure is V = 0.76 ul. The propagation

velocity can also be calculated from the group velocity, d_2"£, of the linear instability

wave theory. It is found to be equal to 0.787 ul. Thus there is good agreement
between linear instability wave theory and direct numerical simulation.

O.O 2.0 4.0 6.0 8.0 I0.0 12.0 14.0 16.0 18.0 20.0 22.0
L

FIGURE 2. Pressure time histories at the eleven monitoring stations at the j = 110

level. Wave front of the instability wave is indicated by a straight line. Time histo-

ries at the intermediate stations show large-scale shock cell and duct oscillations.

Figure 3 shows the pressure variations at the eleven z-monitoring stations at level
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j = 130. These stations are close to the top wall quite far from the shear layer. As

a result, there is minimal influence from the shear layer instability wave. From the

eigenfunctions of the two duct modes, it is found that the contribution from duct
mode 2 is also very small In this figure, two wave fronts can be readily identified.

The first wave front is that of the instability wave having the same velocity as

that in Figure 2. The second wave front is that of the first duct mode. The wave

front velocity as measured from this figure is equal to 0.48 ul. This is in good

agreement with the group velocity -_t = 0.51 ul calculated by the linear theory.

The amplitude of the duct mode oscillations appears to persist all the way to the

end of the computation domain. No significant amplification is detected, although

some slight increase is observed at several intermediate monitoring stations. The

nonlinear steepening of the waves is also evident from this and the preceding figure.

Figures 2 and 3 also show large scale and low frequency oscillation of the flow field.

The precise origin of these oscillations is not clear.

o

0.0 2.0 4.0 6.0 8.0 I0.0 12.0 14.0 16.0 19.0 20.0 22.0

t

FIGURE 3. Pressure time histories at the eleven monitoring stations at the j -- 130

level. Wave fronts of the instability wave and the first duct mode are indicated by

straight lines.

Figure 4 shows the pressure fluctuations at the j = 20 level monitoring stations.

These stations are very close to the bottom wail. At this leve,l the influence of the
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FIGURE 4. Pressure time histories at the eleven monitoring stations at the j = 20
level. There appears to be a leakage of the second duct mode from the computation
domain.

first duct mode and the instability wave is very small. The output is essentially
the pressure oscillations associated with the second duct mode. It is clear from this

figure that the amplitude of the second duct mode decreases in the downstream

direction. The exact cause of this is not known. But since there is no damping
mechanism, it is possible a loss may exist at the bottom wall. In any case, at
a distance of two and a half channel height downstream, the second duct mode

appears to vanish from the computation domain. It appears to re-emerge towards
the end of the channel.

_.I Interpretation and Conclusion

The simulations performed so far were unable to resolve the question of whether

resonant instability can enhance mixing. While the simulations did not show any

enhanced tendency for the mixing layer to roll up or pair, the resonance being sought

was not directly observed. The possible loss of the second duct mode amplitude
may be partly responsible for this. Furthermore, the values of the flow parameters

chosen were not optimal for the resonant instability to be the dominant instability
of the flow. They were chosen to facilitate the numerical calculations. Future work
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FIGURE 5. Schematic diagram of the flow field for direct numerical simulation of

feedback instability.

is needed to resolve these problems.

3. Simulation of Feedback Instability

Simulations of possible feedback instability have been carried out with a flow

configuration as shown in Figure 5. In the first simulation, no trailing edge is
used. In the second simulation, an inviscid trailing edge is inserted at the inflow

boundary extending to 24 mesh cells in the interior. The numerical values of the

flow parameters are:

M1 (subsonic stream) = 0.5

M2(supersonic stream) = 1.5

)_/H = 1/3

TI = T_

5/H = 1/20

where 5 is the vorticity thickness of the shear layer and H is the channel width. The

computational domain consists of a rectangle of 2 × ? and a mesh with 150 x 300
cells and the shear layer is symmetricaily placed. Again, the time evolution of the

flow and acoustic fields is monitored by eleven evenly spaced stations distributed in

the flow direction.
Results of the first simulation are given in Figure 6. Plotted in this figure are

the V velocity component (y-component) at the eleven monitoring stations as a
function of time. The output of the first station (at the inflow boundary) is given

by the bottom curve. The output of the last station (at the outflow boundary) is

given by the top curve. It is clear by comparing the output of the first and last
station that the instability waves of the mixing layer are excited. The time history

of the velocity fluctuation at the outflow station is, however, quite irregular. So
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it is not clear whether feedback instability has been established. We remark that

similar results due to numerical feedback have been observed for incompressible

mixing layer by Buell and Huerre (1988). It is to be noted that the frequency of

oscillations is quite close to that of the instability wave of maximum growth rate
based on linear instability wave theory.

0,1

0.0
I I I

5.0 10.0 15.0

FIGURE 6. Time histories of the v-velocity component at the eleven monitoring
stations. No trailing edge in the simulation.

Figure 7 gives the time history of the V-velocity component at the monitoring

stations for the second simulation. This simulation includes an inviscid trailing

edge. By comparing the output at the last few stations with those in Figure 6,

it is evident that the oscillation amplitudes are much larger. In addition, the os-

cillations appear to be more regular, and the period of oscillation is nearly 1.5 to

2.0 times that without the trailing edge. The observed nondimensional period is

approximately equal to (u2T/6) = 28.0 where T is the period. The expected value

based on feedback theory is 30.0. Thus, there is a good possibility that the observed

oscillations are due to feedback instability. However, because the run time is not

long enough, a firm conclusion is premature. Also, it is known that in simulations of

this kind, numerical feedback is possible. In this present case, this does not appear

to be very significant. To obtain the theoretical feedback oscillation period, the
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upstream propagating waves must travel with the speed of sound against the sub-
sonic flow. Note that upstream stream propagating numerical error waves travel

at speeds considerately larger than the speed of sound. Further investigation is,

nevertheless, needed to rule out with certainty such non-physical feedback loops.

w_

0.0

FIGURE 7. Time histories of the v-velocity component at the eleven monitoring

stations. Inviscid trailing edge included in the simulation.

3.1 Interpretation and Conclusion

The results of the direct numerical simulation are very encouraging. Because the

run time is not long enough, a definitive statement on the existence of feedback

instability cannot be made. However, the agreement between the predicted and

observed frequency and the fairly regular oscillations measured at the very down-
stream stations are surely favorable indications of the possible feedback instability.

Future work must extend the run time by at least a factor of two. Also, a much

longer duct in the direct numerical simulation appears to be very much needed.
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IV. The small scales mixing group

The study of direct numerical simulations of turbulence has significantly added

to the understanding of many turbulent flows. Originally such simulations concen-

trated on examination of the turbulent velocity and vorticity fields, studying both

statistics and the structure of the instantaneous flow fields. More recently there

has been increased interest in using direct numerical simulations to examine the

ability of turbulence to mix scalar quantities (such as temperature or concentration

of a chemical species). This stems partly from the desire to extend the predictive

capabilities of direct numerical simulations to chemically reacting flows.

The interaction of turbulence with a chemically-reacting flow field remains one of

the most complex and least understood problems of engineering interest. In typical

combustion applications the large heat release associated with the chemical reaction

can significantly alter the local hydrodynamics. In addition the turbulence can

dramatically alter the distribution of the reactant (and product) species. In many

practical applications the rate of reaction is controlled primarily by the ability of the
turbulence to mix reactant species. By examining the turbulent mixing of a passive

scalar quantity (one which does not alter the hydrodynamic flow field) the mixing

capability can be studied without the added complications associated with heat-

release-induced alterations of the flow field. Such direct numerical simulations of

passive scalar mixing thus lend themselves directly to the study of mixing by realistic

turbulence, ignoring complex reaction kinetics and the effects of heat release.

In many practical combustion applications the reaction occurs in free shear flows,

e.g. fuel jets_ flame-holder wakes. Perhaps the simplest such free shear flow is the

plane mixing layer and it is thus often used as the prototypical free shear flow for

the study of turbulent mixing. The development of three-dimensionality and small-

scale turbulence in such a plane mixing layer is of crucial importance to its mixing

capabilities. Three of the four projects summarized below were directed at studying
small-scale turbulence and scalar mixing in this flow. The fourth is more general in

nature, directed towards elucidating the basic mechanisms of scalar mixing.

Recent direct numerical simulations have shed substantial insight into the early

evolution of plane mixing layers. Despite this, no general theory is available to

predict the layer evolution for disturbances that are too large for the results of

linear theory to be valid. The fact that this flow is sensitive to slight changes in

initial conditions underscores the need for such a model. Daniel Riahi, Bob Moser

and Fabian Waleffe investigated various possible weakly-nonlinear theories in an

effort to complement the direct numerical simulation results. This proved to be

more difficult than initially anticipated due primarily to the time-evolving nature

of the base flow under consideration.

Very large direct numerical simulations have just recently been able to simulate

through the mixing transition (sudden increase in mixing due to proliferation of

small-scale motions) in the plane mixing layer. It is of great interest to ascer-

tain whether this transition resembles that seen in experiments. Yitshak Zohar_
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BobMoser, Jeff Buell and Chih-Ming Ho extensively compared the post-transition

numerical simulation velocity and vorticity fields with data taken in experimen-

tal mixing layers by Zohar and Ho. They found a high degree of correspondence

between the two, with both indicating that the most probable length scale of the

small-scale eddies corresponds to the scale associated with the peak of the energy-

dissipation-rate spectrum and that the small-scale strains are comparable to the

global strain associated with the velocity difference across the layer and the stream-
wise separation between eddies.

The mixing transition discussed above is associated with development of small-

scale three-dimensional eddies by vortex stretching and thus presumably could not

occur in a two-dimensional simulation. Javier Jim_nez examined passive scalar mix-

ing in very high Reynolds/Peclet number two-dimensional mixing layers to study
the mixing behavior in the absence of the three-dimensional structures described

above. He found that while a mixing transition of the kind seen in three-dimensional

simulations was not observed, there was a definite increase in the complexity of the

"reaction sheet" separating two chemical species (as measured by its fractal dimen-

sion). This increase was found to occur during the first pairing of the primary

Kelvin-Helmholtz rollers and subsequent pairings did not further increase the di-

mension. The observed fractal dimensions, both before and after the pairing, have

been explained in terms of two model structures. The simulations of Jim_nez and

Martel also confirm that the Peclet number (product of flow Reynolds number and

scalar Schmidt number) is the relevant parameter for quantifying the mixing char-

acteristics. Simulations with identical Peclet numbers (but different Reynolds and

Schmidt numbers) were found to yield virtually identical scalar mixing behavior.

The final project in the small scales mixing group was a more general exam-

ination of the small-scale mixing behavior of a passive scalar quantity in homo-

geneous isotropic turbulence. In particular Carl Gibson, Mike Rogers, Jeff Chas-

nov and John Petresky sought to determine by numerical simulation whether the

small-scale strain rate is relevant in determining the nature of the scalar field for

Prandtl/Schnfidt numbers much less than unity. Batchelor has proposed that the

small-scale strain (primarily due to scales much smaller than the smallest scalar

scales) would be irrelevant to the scalar behavior and predicted a k -17/3 (k being

the magnitude of the wavevector) decay of the scalar spectrum beginning from the
Corrsin-Oboukhov scale. Gibson proposed mechanisms in which the small-scale

strain rate is relevant and predicted an intermediate k -3 decay of the scalar spec-
trum between the Corrsin-Oboukhov scale and the Batchelor scale. Results from

forced direct numerical simulations were found to scale in the manner proposed
by Gibson, but this may be due to the low Reynolds numbers of the simulations.

Higher-Reynolds-number simulations, obtained by using a subgrid-scale turbulence

model for the velocity field, support the ideas of Batchelor; however it may be

that the subgrid-scale model is not accurate enough to account for the small-scale

strain-related mechanisms suggested by Gibson.

Mike Rogers
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Low order dynamical models for mixing laydrs

By D. N. Riahi 1, R. D. Moser 2 AND F. Waleffe s

The goal of this project was to investigate the feasibility of developing useful low

order dynamical systems to allow one to determine cheaply the effect of various
initial conditions on the evolution of mixing layers. A mathematically rigorous ap-

proach for a time evolving base flow as found in a mixing layer seems to be the

singular value decomposition of the linear operator transforming some initial per-
turbations into the solution at a given later time. Unfortunately, this is very costly,

if at all feasible, and only deals with the linear evolution of a disturbance. A dif-

ferent approach based on weakly non-linear analysis was attempted, but numerous
difficulties were encountered. Several formulations were proposed which may be

iLl-posed. The reason for this possible failure of the attempted approach is related
to fundamental limitations of weakly non-linear analysis. The darification of these

issues is attempted in this report.

1. Introduction

We are concerned with the evolution of a two-stream mixing layer, and for the

sake of simplicity, we consider a time-evolving mixing layer, which is periodic in the

streamwise (z) and spanwise (z) spatial directions. In a time-evolving mixing layer,
one considers two semi-infinite streams moving in opposite direction with equal

velocities. The interface region between the two streams is unstable, and we are
interested in the evolution of arbitrary perturbations to the flow. It is well known

that the fastest growing linear disturbances are two-dimensional modes which lead
to the Kdvin-Helmholtz rdl-up of the mixing layer. Two-dimensional roll-ups of

the mixing layer are commonly observed both experimentally and numerically. It is

of great interest to understand the way in which the two-dimensional mixing layer

undergoing the Kelvin-Helmholtz roll-up becomes three-dimensional. This problem
has been addressed numerically by Moser & Rogers (1990) and Rogers & Moser

(1989). However, it is not possible to thoroughly explore the infinite dimensional

space of initial conditions numerically. An analytic theory which captures the im-

portant features of the full problem is required. Two features of this problem make
the analytic theories considered here difficult. First, the critical Reynolds number
for the flow is zero (or near zero), so that flows of interest are always far from the
critical condition; and second, the base flow (the rolling up mixing layer) on which

the perturbations are to evolve is itself evolving in time.

1 University of Illinois

2 NASA Ames Research Center

3 Center for Turbulence Research
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In the current effort, an extension of standard methods of weakly non-linear

analysis to this problem was attempted. The purpose of weakly non-linear analysis is

to shed light on the nature of non-linear processes, especially as to how they modify
the development of an instability. Usually, non-linearity induces a saturation of the

exponential growth of a perturbation. That non-linear saturation can take many

different forms. A weakly non-linear analysis usually leads to significant qualitative
insights into the physics of the problem. However, one is in general restricted to an
investigation near criticality, i.e. to small departures from the base flow. In that

range, the full dynamics can be well described by the evolution of one or a few

modes. Of course, one can always heavily truncate a representation of the full flow

field so as to obtain a low order system of differential equations. With luck, such a

severe truncation could be indicative of the behavior of the full system, but there

is no guarantee. Severe truncations can lead to extremely interesting non-linear

systems, but they are not necessarily representative of the real thing. The Lorenz
equations, for instance, can be obtained from a three-mode truncation of the flow

field in the study of convection. The truncated system shows fascinating dynamical

behaviors (chaos, etc.), but the real flow behaves differently. In a weakly non-linear

analysis, one seeks to deduce a simple dynamical system in a range where it will be
a faithful representation of the real physics. The ideas involved in the derivation

of a low order system and the difficulties encountered for the mixing layer case are
illustrated below.

2. Weakly non-linear analysis

Let us consider a non-linear problem (e. 9. the incompressible Navier-Stokes equa-

tions) where the full solution field v is decomposed into a basic state U and a per-

turbation u: v = U + u. Substituting in the governing equations and subtracting
out the basic state, one obtains the equation for the perturbation which, for the
purpose of illustration, will be written here as:

0
-_u + Lu = eN(u,u) (1)

where L is a linear operator and N is a quadratically non-linear operator. The

parameter e has been introduced (after a rescaling perhaps) as a measure of the

amplitude of the perturbation (at time 0 say). A straightforward solution technique
would be to expand the perturbation as a series in powers of ¢:

u=u0+_ul +_2u2+...

Substituting this series in the equation and equating powers of _ yields an infinite
sequence of linear problems:

0

-_uo + Luo =0

a

+ Lu, =N(uo,Uo) (2)

+ + N(uo,u )
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Unfortunately, such an expansion is, in general, nastily divergent. At best, it is

valid in an asymptotic sense, i.e. in the limit as e _ 0 (when properly scaled). If

any of the ui is growing in time, the expansion will, furthermore, be valid only for
small times. In the mixing layer case, for example, we might simplify the problem

by taking a base flow which is independent of time, implying that L is independent

of time (as in Pierrehumbert & Widnall 1982). In that case, the solution for u0 is
obtained from the eigenfunctions of the operator L and can be written

UO = e_t_o,

where ¢o is an eigenfunction (normalized) and )_ an eigenvalue of L. In the simple
case of a time developing mixing layer in an z-periodic domain considered here,

there are one (or possibly a few) real positive )t; the rest are in general complex

with negative real parts. Taking _ and ¢0 to be the most unstable mode, can we
follow its non-linear development? The first order problem is

0
-_ul + Lul = e2XtN(qbo,¢o) (3)

and admits a separable solution of the form ul = exp(2)_t)¢l. Substituting that

form in (3), ¢1 is the solution of (L + 2_,)¢1 = N(_b0,¢0). As ,_ is the largest

eigenvalue of L, the operator L + 2_, is not singular and _bl exists. One can proceed

similarly to arbitrary order and obtain:

u = eXt¢o + te_Xtcbl + t_eSXt¢2 +""

The linear solution is valid provided te xt << 1. The higher order terms provide an

asymptotic expansion in the same limit, but they do not eztend the range of validity

(in time) of the ezpansion.
It is possible to extend the domain of validity of the expansion if the growth rate

is small, a concept to be made precise below (e.g. Stuart 1960). The zeroth order
solution is written as u0 = A(t)¢o, with (L + )_)¢0 = 0. Substituting in (1) shows

that dA/dt - )_A = O(tA 2), where e should be considered as an ordering parameter,
eA is the real measure of the amplitude. The next order problem is

O 1 (da _ )_a)¢o + O(ea 3) (4)

To extend the range of validity of the solution, at least for the eigenmode ¢0, one
wants to insure that ul will not contain any growing contribution of the form ¢0.

This is the case if one requires that the right-hand side of (4) be orthogonal to ¢_,

the solution to the adjoint of the linear homogeneous problem. The adjoint ¢_ is

the solution of (L* + )¢)¢_ = 0, where the operator L* + )t* is defined through the

relation: < $_,(L + _)¢0 >=< ¢0,(L* + A*)$_ >. The brackets < • > denote the

appropriate inner product. That requirement yields an equation for A:

(___dA_ )_A) < ¢_,¢o > -cA2 < ¢_,N(¢o,¢o) >= O(t2A3)
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or

dA

dt - AA+ ¢A2A_ +O(e2A 3)

The solution for ul is then taken to be of the form ul = A2_b_. Substituting in (4),
it is found that _b_ satisfies:

(L + = - A2 ,o

as stated above _b_ exists. The next order problem becomes:

0

-_ u2 + Lu2 = A 3 [N(_b_, _0) + N(_b0, _b_)] - 2A2A 3_b_- AsA 3_0 + O(eA 4) (5)

The constant As is determined by requiring that the inner product of the right-hand

side of (5) with _b_ be zero. One then looks for a solution of the form u2 = AS_b[.
The procedure can be extended to arbitrary order and yields the solution:

u = A(t)_bo+ eA2(t)_ + _2A_(t)_ +...

with
dA

- AA+ _A2A2 + c2AsA _ + ...
dt

In practice, the expansion is truncated at some finite order. There are two possible

outcomes of such an analysis. First, the solution for A(t) may grow rapidly and be

unbounded; in this case the solution quickly becomes invalid as A becomes large.
Second, the solution for A may saturate and remain bounded; assume, for instance,
that A2 is negative. Then the second order truncation indicates that there is an

equilibrium solution with A = -A/(eA2). In this case, the second order truncation

is uniformly valid in time in the asymptotic limit A _ 0 like _. Thus, the expansion
is valid near the (super critical) critical point for the instability under consideration.

We are here considering the mixing layer far from critical; however, we proceeded
with the analysis and hoped for the best.

During the course of the summer program, an analysis of this sort was applied

to the Navier-Stokes equations for the case of the mixing layer. Several added

difficulties were encountered and successfully treated. For example, the dependent

variable is a divergence-free vector quantity which was treated by using a vector

stream function formulation. Also, a spatially growing layer was considered in
addition to the time-developing layer discussed here. This required the introduction
of two time and space scales to accommodate the traveling wave component of the
solution.

The difficulty which could not be so easily overcome is the fact that the base flow

is time-evolving. The procedure outlined above is straightforward and well defined

when L is independent of time, but L becomes explicitly time dependent when the

base flow is time dependent. In this case, there are no longer eigensolutions to the

zeroth order linear problem. To obtain a solution to the linear problem, we must
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specify an initial condition u(t = 0), which when L was time dependent was taken
to be the most unstable eigenfunction. This guaranteed that there would be no

faster growing solution that would enter at higher order to invalidate the expansion.

Without eigensolutions, we cannot guarantee this except by using singular value

decomposition. (see §3). Also, if we are to generalize the solution procedure (as was

attempted), the inner product, orthogonality, and the adjoint of the linear problem
must be generalized by including an integral in time in the definition of the inner

product. Thus we must consider from the outset a finite time interval (say (0, ta)).
It is then possible to proceed mechanically with the solution procedure, defining an

"adjoint" and determining a "solvability" condition. However, as formulated, the

adjoint solution has to satisfy a "temporal boundary condition" qb'(t = tl) = 0,
which for a diffusive operator L results in an apparently iLl-posed problem for _b*.

Finally, even if the appropriate adjoint solution(s) were available, it is not clear
that the resulting expansion would be valid over the time interval (0,ta) because

the expansion functions _bi are now functions of time, which may or may not exhibit

large growth over the time interval.

3. Other generalizations

The generalization of standard weakly non-linear analysis to the time-evolving

mixing layer encountered several problems as outlined above. However, the gener-
alization of the linear problem is clear. When the linear operator L is dependent on

time, then the general solution of the zeroth order linear problem can be formally

expressed as a linear operator which takes arbitrary initial conditions at t = 0 to
a solution at t = tl. It is the singular value decomposition of this operator and in

particular the singular functions associated with the largest singular value which are
of interest. Unfortunately, obtaining this decomposition appears computationally

intractable at this time. There may also be a generalization of the weakly non-linear

analysis making use of a decomposition in terms of the singular functions, but this

has not been explored.
Another possibility is to use a technique like that of Riley et al (1988), in which

some of the difficulties discussed above are overcome by solving for the evolving
base flow as well as the perturbations. However, this too suffers from the lack

of a uniforndy valid asymptotic expansion as a basis for the analysis. Finally, by

considering a different problem (e.g. a plane wake) and appropriately scaling space

and time, one may be able to obtain a model problem which is more amenable to

analysis but is stir relevant to the study of free shear flows.
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Numerical simulations of turbulent mixing of strongly diffusive scalar fields were

carried out with and without subgrid-scale modeling of the small-scale strain field.

For low-Reynolds-number flows, when the rate-of-strain fidd (determined primarily

by the small scales) is fully resolved, the scalar microstructure was found to collapse
under Batchelor (1959) rate-of-strain scaling even for small Prandtl numbers, in

agreement with Kerr (1990). For high-Reynolds-number flows, when small-scale
straining is modeled with a subgrid-scale model, the scalar microstructure follows
the Batchelor, Howells and Townsend (1959) prediction that the small-scale rate-

of-strain is irrelevant.

1. Introduction

An important problem of turbulent mixing is to determine the mechanisms of
small-scale mixing for the case of strongly diffusive scalar properties; that is, prop-

erties like temperature with Prandtl number Pr = v/D < 1, where D is the molec-

ular diffusivity of the scalar O and r, is the kinematic viscosity of the fluid. Recent
contributions that review the theoretical and experimental issues can be found in

Gibson, Ashurst and Kerstein (1988) and Kerr (1990).

Oboukhov (1949) and Corrsin (1951) independently inferred an inertial subrange

for the scalar spectrum

r = _,iX_-l/ak-5/a; Lo 1 < k (L_1; Lc -- (Dale) 1/4 (1)

which terminates at the Oboukhov-Corrsin length scale Lc. Here _si i$ a universal

constant, X is the dissipation rate of scalar variance, e is the dissipation rate of

turbulent kinetic energy, k is the wavenumber and Lo is the energy, or Oboukhov,

length scale of the turbulence. The spectral form in (1) was inferred by dimensional
analysis without reference to any specific physical mechanisms or mathematical

models, and is therefore analogous to the velocity inertial subrange

--_a_/ak-5/a; Lo 1 < k ( LK1; LK ----(va/_) 1/4 (2)

that follows by dimensional analysis from the Kolmogorov (1941) universal similar-

ity hypotheses (which also does not assume a particular mechanism or model for

1 University of California at San Diego

2 NASA Ames Research Center

3 NASA Goddard Institute for Space Studies
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t=O .. In[D/v]'a

T

FIGURE 1. Batchelor (1959) wave crest compression model for Pr >> 1. A scalar

Fourier element 0 smaller than LK is compressed to the Batchelor scale LB, without

decay, in time ln(D/u)l/_/7 , by uniform straining 9'. At LB its amplitude begins
to decrease by molecular diffusion. This model fails for Pr << 1.

the flow field) where 6 is the energy spectrum, a is a universal constant, and LK
is the Kolmogorov length scale.

The first specific physical model for scalar mixing by turbulence was the wave

crest compression mechanism of Batchelor (1959) for the case of weakly diffusive

scalars 0 like salt concentration in water, with Pr >> 1. The model is illustrated in
figure 1.

Batchelor showed that Fourier elements of the scalar field with wavenumbers

k > L_: 1 would align with the compressive axis of the rate-of-straln tensor eij:

1/2(Oui/Ozj + Oui/Ozi) and would be rapidly convected by strain-mixing, not tur-

bulent mixing, to the Batchelor length scale LB - (D/7) 1/_, where 7 is the rate

of strain 3' = (e/v) 1D. The velocity field acting on scales smaller than LK consists

of locally uniform staining so wave crests would simply be convected together, as

shown in figure 1. By this very plausible physical model a viscous-convective sub-

range was derived for the range of scales smaller than the viscous cutoff Kolmogorov
scale but larger than the diffusive cutoff Batchelor scale,

F--/3vcXT-'k-l; L_' < k < LK 1 , (3)

where/3vc is another universal constant. Equation (3) can also be derived by dimen-

sional analysis, but the Batchelor (1959) mathematical analysis permits a bound to
be placed on the value of the universal constant

¢5 < < (4)

as shown by Gibson (1968b), where the form of the spectrum derived by Batchelor
(19s9) is

F = 13_¢XT-'k-' exp(-13.¢k'O/7); k > LTc' (5)
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for Pr >> 1. The spectral form given by (5) has been tested experimentally many

times, starting with Gibson and Schwarz (19631, and has generally been verified

with respect to the form in (5) and the constartt in (4/. Gargett (1985) finds a

large departure from (4/, by a factor of 4, in a Fjord, but Gibson (19861 shows

the departure may be the result of averaging together fossil turbulence and active

turbulence patches without accounting for the extreme intermittency of viscous and

scalar dissipation rates usually observed in such stratified flows.
For the case of Pr << 1, however, the Batchelor wave crest compression mecha-

nism fails because the separation of wave crests for the smallest Fourier elements

used to represent the scalar field will be larger than the size of the regions of uni-

form strain, which should be of order LK. Consequently, Batchelor, Howells and

Townsend (1959) proposed that the rate-of-strain should become irrelevant for tur-

bulent mixing of such strongly diffusive scalars. Based on this hypothesis, they

derive an inertial-diffusive cutoff spectrum for Pr << 1 beginning at the Oboukhov-

Corrsin scale Lc - (D_ /_) 1/4

ot n-s_2/_ _-17/3.
- , k>L 1 (6)

where a is the inertial subrange constant of the turbulent velocity spectrum in (2).

From an analysis of the velocities of isoscalar surfaces and zero-gradient points,

Gibson (1968a) suggested that other physical mechanisms besides the wave crest

compression mechanism of figure 1 exist by which the smallest scalar fluctuations

for Pr << 1, or indeed arbitrary Pr, could be mixed to smaller scale by the rate-of-

strain tensor eij, and proposed that probability laws describing the smallest scale

features of scalar fields with arbitrary Pr should become universally similar under

"Batchelor" coordinate normalization with length LB, time TB = 7 -1 and scalar

SB =-- (X/7) 1/2 scaling of space, time and scalar, respectively. For Pr << 1, this

shifts the beginning of the inertial-diffusive cutoff of (6) to LB rather than Lc, and

results in an intermediate strain-rate-diffusive k -3 subrange

F = f3ardxD-lk-3; L_ 1 < k < L_ 1 (7)

prior to the final inertial-diffusive cutoff, presumably with the form of (6), but with

a different constant, an explicit Prandtl number dependence

F = fJidPr-2/axD-S_2/3k-17/a; LK 1 < k < LB 1 , (8)

and an exponential cutoff at the Kolmogorov scale LK. Gibson (1968a) suggested

that turbulence produces extremum points, hot spots and cold spots for tempera-

ture, by distorting isothermal surfaces until they become diffusively unstable and

split up, at scales no smaller than Lc, to form multiply connected surfaces. The

extremum points diffuse to positions of symmetry and then tend to be convected

as fluid particles so they can be compressed and stretched as fluid particles by

the local strain field, with a stretching-diffusion equilibrium length scale LB for all

Pr. Other topological features of the scalar field exhibit similar sensitivity to the
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FIGURE 2. Interaction and alignment of the local rate-of-strain tensor t" with
topological features of scalar fields mixed by turbulence that have minimal or zero

gradient, according to the Gibson (1968a) strain-mixing model. Extrema and saddle

points have zero gradient, and are connected by the checkered minimal gradient line,

which tends to be aligned with the stretching axes of the local e', independent of
the Prandtl number of the scalar field.

strain-field history. For example, the lines of minimal gradient that must connect a

set of extrema and saddle points (resulting from secondary splitting of an original
extremum produced by turbulence) tend to be stretched out as material lines. This

is illustrated schematically in figure 2. The steepest scalar gradients occur in the

vicinity of the extremum points and the minimal gradient lines are aligned with
the compression axes of the strain-rate tensor. Using numerical simulations of two-

dimensional turbulence, Gibson, Ashurst and Kerstein (1988) confirmed that this

was the case, and suggested a positive feedback mechanism based on the expression

for the velocity of isoscalar surfaces _Y0in terms of the fluid velocity _" and the

diffusive velocity _Yo derived in Gibson (1968a). As shown in (9), the convective

velocity of the fluid will dominate the motion of 0 surfaces when the diffusive velocity
is small, i.e. when gradient magnitudes IV01 are large and V20 values are small. But
gradient magnitudes IV0] will be increased by such convection of isoscalar surfaces

and this results in a positive feedback mechanism of mixing.

Based on the rate-of-strain mixing mechanisms of figure 2, Gibson (1968b) pro-
posed the universal similarity hypotheses in table 1. According to these hypotheses,

the n-joint probability laws Fe,, describing turbulent mixing of scalars 0 at n points
separated by vectors ffk, where k = 1,...,n, will become universally similar in nor-

malized Batchelor, Corrsin and Kolmogorov spaces (see table 2), depending on
the Prandtl number and length scale _/k ranges of the k th separation vector. The
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Hypothesis Length range Prandtl number, Pr

la. Fon(X,7, D, yk) yl < LB all values
Yk < LK >> 1

y_ < Lc << 1

lb. Fo,_(X,e, yk) LK < Y_ < Lo >> 1
Lc < y_ < Lo << 1

2a. Fon(X,e,D, yk) LB < Yk < Lo << 1

2b. Fs_(X,e,y_) LB < Yk < Lc << 1

3a. Fo_(X,e,v, Yh) LB < Yk < Lo >> 1

3b. Fo,(X,7,Yk) LB < Y_ < LK >> 1

Table 1. Universal similarity hypotheses of turbulent mixing

Scale

(dimensional parameters)

Batchelor Corrsin

ix, 7, D) (X, ', D)
7prl/2 = (e/D) 1/2

Length: LB, Lc, LK
Time: TB, Tc, TK

Scalar: SB, Sc, SK

(DIT)'/2 (DITPr'/2) '/2

7-1 (7prl/2) -1

(xl7)1/_ (x/TPrl/2) 1/2

Table 2. Scales of turbulent mixing

Kolmogorov

(x, v)
"r= ( lv) 112

7-1

(xl_) 11_

formulation is completely analogous to that proposed by Kolmogorov (1941) for

turbulent velocity fields, and has the same limitations due to intermittency of the

dissipation rates. In table 1, the largest scale eddy of the turbulence is indicated by
the Oboukhov, or energy scale Lo. Dimensional analysis based on the hypotheses,

as well as overlapping length scale ranges, leads to overlapping power law subranges

k-SD, k -3 and k -1 from hypotheses lb, 2b and 3b, respectively, in B, C and K

spaces.
Evidence supporting the Gibson (1968a,b) theory has been gradually accumulat-

ing from low Pr mixing experiments such as Clay (1973), and numerical mixing ex-

periments of Kerr (1985) and Kerr (1990). However, numerical mixing experiments
of Chasnov, Canuto and Rogallo (1988) and Chasnov (1990), using a subgrid-scale
model for the small scales of the velocity field, give strong support to the Batchelor,

Howells and Townsend (1959) theory and expression (6) in the far-inertial-diffusive

subrange, k >> L_ 1. The purpose of this paper is to attempt to clarify possible
reasons for the discrepancies between these apparently contradictory results.
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2. Numerical experiments

Numerical simulations of turbulent mixing are constrained to relatively small

Reynolds numbers by computer speed and memory limitations. The larger the
number of mesh points in the grid, the larger the Reynolds number of the simulation

but the higher the cost of the calculation in time and money. Clearly it would be

advantageous if approximations could be made for the smaller-scale features of

turbulence and mixing by means of subgrid-scale modeling, so that the larger-scale

features characteristic of high-Reynolds-number turbulence could be explored. The

results shown below indicate that if turbulent mixing at low Prandtl number is

dominated by direct interactions of the velocity strain rate and scalar fields, then

the subgrid-scale model does not capture this effect, at least over a wide range of
Pr.

All simulations examined here are of three-dimensional incompressible homoge-

neous isotropic turbulence. Several low-Prandtl-number passive scalar quantities
were mixed simultaneously by each of the velocity fields simulated. The cases con-

sidered here fall into three classes. The first employs both forcing of the large scales

and a subgrid-scale model to obtain as wide an inertial subrange as possible and sta-

tistically stationary turbulence. The second type uses only a subgrid-scale model,

thereby permitting the simulation of high-Reynolds-number decaying turbulence.

The third class maintains the forcing of the large scales to obtain a statistically

stationary flow but fully resolves the small-scale motions, thereby significantly re-
ducing the flow Reynolds number. Scalar fields both with and without mean scalar

gradients were considered. Because of the low Prandtl numbers considered, the

scalar fields were well-resolved on the computational mesh (i.e. no subgrid-scale

model was required for the scalar fields in any of the simulations). The simulation

results were evaluated in terms of the form of the velocity and scalar variance spec-
tra, mixed skewness statistics, and direct visual inspection of the three-dimensional

computed fields. Spectra were normalized with the length, time and scalar scales
listed in table 2.

Energy spectra (kS/2_)K versus (k)K for the three types of numerical simulations

are shown in figure 3, where K subscripts indicate normalization with Kolmogorov
length LK and time TK from table 2. All have the same 1.5 decades of wavenumber

range corresponding to the 642 mesh used in the calculations. The direct numer-

ical simulation has only a short inertial subrange (part of the flat portion being

associated with the forced modes) but agrees well with the universal spectral form

of laboratory and field experiments. The forced subgrid-scale simulation is reason-

ably flat over all wavenumbers (i.e. contains only inertial subrange) whereas the

unforced subgrid-scale simulation becomes flat only at the largest wavenumbers.

3. Direct numerical simulations

The direct numerical simulations (no subgrid-scale model) were made for a flow

with viscosity _, = 0.01 on a 642 mesh with Az = 27r/64 = 0.0982 (note all di-

mensional quantities given in this paper are in arbitrary but consistent units). The

scalar fields all evolved in the presence of a mean scalar gradient of magnitude
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FIGURE 3. Kolmogorov normalized energy spectra for numerical simulations,

multiplied by k 5/3. _ forced subgrid-scale model, .... unforced subgrid-scale

model, ........ direct numerical simulation.

OT/Oz = 1.0. The field examined here has evolved for about 1.5 eddy turnover
times and has _ = 0.0595 and LK = 0.0640. Four scalars were simultaneously

mixed, with Pr values of 0.769, 0.434, 0.172, and 0.118. Spectra multiplied by k2
and normalized by Batchdor scales of table 2 are shown in figure 4 for the vari-

ous Pr values. Such spectra must have integrals equal to 1/2 from the Batchelor

normalization, as shown by Gibson (1968b). It is readily apparent that the spectra

collapse under this scaling.
The longitudinal mixed skewness parameter E, with components

o,, (oo'_ 2 o,. (oo_2

_,a=, _ \o,J (10)

are sensitive indicators of the role of rate-of-strain in turbulent mixing (u, v and

w are velocity components in the z, _/and z directions, respectively). Note that

_, may be different from E,, and E, because of the presence of the mean scalar

gradient in this direction. Clearly E should approach zero as Pr approaches zero if
the rate-of-strain becomes irrelevant to the mixing, but if Hypothesis la is correct,

should be approximately independent of Pr and negative because compressive

negative straining should enhance scalar gradient magnitudes. Values of E for the
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FIGURE 4. Batchelor-scaled scalar dissipation spectra from direct numerical sim-

ulation of low Pr mixing. _ Pr = 0.769, .... Pr = 0.434, ........ Pr = 0.172,
----- Pr = 0.118. Convergence of spectra for low Pr values is consistent with
Hypothesis la of table 1.

Pr _u ICy _,

0.769 -0.473 -0.329 -0.518

0.434 °0.426 -0.309 -0.505

0.172 -0.333 -0.262 -0.493

0.118 -0.277 -0.246 -0.478

Table 3. _ values for the direct numerical turbulence simulation

present numerical simulation are given in table 3.

All the values of _ in table 3 are negative and significantly nonzero. Differences

in magnitude and the tendency to decrease somewhat as Pr decreases may be the

result of the small mesh size. Kerr (1985) used a larger mesh of 1283, and reports
no such trend when the Peclet number Pex (here based on the Taylor-microscale
Reynolds number) is greater than about 10. For Pex < 10 he observes a decrease

in _. The value of -_ is proportional to the integral of (kq")B,

_4 _

_0 °°-- (k'V)Bd(k)B (11)5
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FIGURE 5. Batchelor-normalizedscalardissipationspectraof unforced subgrid-

scale modeled simulations. Estimated Prandtl numbers are ----- Pr = 0.045,

.... Pr = 0.019, ........ Pr = 0.007, ----- Pr = 0.003. The upper and lower

straight solid lines represent k -3 and k -17/3 behavior of r, respectively.

as shown by Wyngaard (1971). Thus the collapse shown in figure 4 implies that E

should be nearly the same for all four Prandtl numbers. However, for the spectra in

figure 4, the value of _3is primaxily determined by the behavior of (k4I')B over the
wavenumber range 0.5 < (k)s < 1.5 with (k417)s peaking at about (k)s = 0.8. The
value of E is thus very sensitive to the details of the spectra for these wavenumbers.

The smaller values of E for the lower Pr cases in table 3 are a result of the slight

drop in the spectra (figure 4) for these cases near (k)B = 0.8.

4. Simulations employing a subgrid-scale model

The subgrid-scale model of Chasnov (1990) was used to generate high-Reynolds-
number flow fields with an inertial subrange. Use of such a model, however, implies

that the actual small-scale behavior (including that of the strain field) is not re-

solved. The subgrid-scale model seeks to simulate the case where v -- 0. In reality

the large scales feel an "effective" viscosity which is fairly constant away from the
cutoff wavenumber. Here this effective viscosity is used to estimate the Prandtl

number. Simulations were run with and without forcing of the large-scale motions
and with and without a mean scalar gradient (again OT/Oz = 1 for mean gradient

cases). The energy spectra for both the forced and unforced cases are shown in

figure 3.
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Estimated Pr _, _,_ _,_,

0.045 -0.428 -0.383 -0.448

0.019 -0.279 -0.271 -0.247
0.007 -0.121 -0.107 -0.116

0.003 -0.046 -0.052 -0.046

Table 4. _] values for the unforced subgrid-scale turbulence simulation

The Batchelor-scaled scalar dissipation spectra for scalars of four different molec-

ular diffusivities are shown in figure 5 for the unforced case in the absence of a mean

scalar gradient. It is clear that they do not collapse. Spectra for the smaller Pr

values in figure 5 approach the -17/3 subrange of (6), both in slope and absolute

value. The largest Pr value approaches the -3 subrange of (7), and as will be
shown below, it approaches the universal Batchelor diffusive cutoff form of figure 4.

The behavior of the lower Pr cases in figure 5 is limited by the computational box

size. Visual examination of the Pr = 0.003 scalar field shows that essentially only
one large structure is in the computational domain and the results are therefore

clearly affected by the imposed periodicity. The spectra have significant contribu-

tions from a few low wavenumbers, then drop very rapidly (faster than k-17/_!)
before finally decaying at the expected k-17/3 rate. Effectively, the computation is

setting up a large structure which provides a mean scalar gradient. A limited range
of wavenumbers (about half those in the computation) can then respond to this

gradient. Because it is not feasible to dramatically increase the computational do-
main size, another means of increasing the range of useful wavenumbers is needed.

By explicitly imposing a uniform mean scalar gradient the computation does not

have to form its own large-scale structures and the entire range of computational
wavenumbers becomes useful for the study of the problem considered here.

Table 4 lists _ values for this flow. As the Pr values of the scalars approach
zero in table 4, the correlations _,,,_,_ between compressive strain and the scalar
gradient also approach zero. However, close examination of the microstructure of the

scalar fields revealed that only the field with the largest Pr value of 0.045 possessed

significant numbers of zero-gradient points. The conditions for the strain-mixing
mechanism of figure 2 were thus not met. The effective Peclet number (product of
Reynolds and Prandtl numbers) of the simulated turbulence for smaller Pr values

was too small for any extrema to be produced. For the spectra of the lower Pr cases

in figure 5 the dominant contribution to _ comes from (/¢)s = 0.3 with virtually
no contribution from wavenumbers (/¢)s > 0.6. The value of Z for the Pr = 0.045

case is similar to the values in the direct numerical simulations given in table 3 and
the (k)s wavenumber range which contributes to Z is also similar to that observed
in the direct numerical simulations.

Figure 6 shows the Corrsin/Batchelor-scaled spectra (same scaling for the quan-
tity /¢3r) plotted against the Corrsin-scaled wavenumber for several forced cases
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represent k -s/3 and k -17/3 behavior of P, respectively.

with an explicitly imposed mean scalar gradient. Time-averaged spectra (permit-

ted by statistical stationarity and done to smooth the curves) from a 643 simulation

with four passive scalars are shown along with results for two scalars from a single

time of a (different velocity field) 1283 simulation. All the curves exhibit a good

collapse onto an apparently "universal" spectrum when the mean scalar gradient

is included in the scalar dissipation used for the normalization (note that for the

high Peclet number fields the dissipation due to the mean is insignificant compared

to that of the fluctuating field). This collapse is in agreement with the predictions

of Batchelor, Howells & Townsend (1959) but may be an artifact of the subgrid-

scale model. There is a fairly wide transition region between the k -s/3 and k -17/3

subranges, the latter occurring for (k)c > 2.5.

When the "universal" subgrid-scale spectrum shown in figure 6 is fitted to a

smooth curve (consisting of k -s/3 and k -17/3 subranges and the fitted transition

between them) _ can be calculated from (11). The existence of a "universal"

spectrum in these coordinates implies that _ decays like Pr 1/_ for small Pr. Use

of the fitted curve yielded _ _ -3Pr 1/2 (the exact value of the coefficient being

somewhat dependent on wavenumber cutoffs chosen for the different subranges),

with the dominant contribution coming from the k -17/3 subrange, closely followed

by that from the transition region. Contribution to _ from the k -s/3 range was
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negligible. Z values calculated directly from the computed flowfields may not agree

exactly with this formula due to the more limited range of wavenumbers captured

by any one computation and departures from the fitted curve.

5. Comparison of direct and subgrid-scale modeled simulations

It is interesting to compare the largest Pr value unforced subgrid-scale simulation

(with Pr = 0.045) to the direct numerical simulations of §3, since this is still a factor

of 2.6 smaller than the smallest direct numerical simulation Pr value. Figure 7

shows a comparison of the scalar dissipation spectra. The Batchelor-normalized

subgrid-scale spectrum is in excellent agreement with the results from the direct

numerical simulations, collapsing onto a single "universal" curve for (k)B > 0.3.
The larger effective Reynolds number of the subgrid-scale modeled flow seems to

have led to the development of a small region of straln-rate-diffusive k -3 subrange,

as shown also in figure 5. The subgrid-scale simulation suggests that with still

higher Reynolds number simulations, a strain-rate-diffusive k -3 subrange might be

found. The universal constant _rd indicated by figures 5 and 7 is about 0.23 (note

(k2r)B = _,rd(k)_ 1 in the k -3 subrange and therefore _srd equals the value of the

k -3 line at (k)B = 1). It is also interesting to note the rather strong departures

between the Batchelor (5) viscous-diffusive behavior for Pr >> 1 and the numerically

computed behavior for Pr =- 0.1-0.5.

6. Conclusions

Scalar spectra resulting from turbulent mixing by a high-Reynolds-number ve-

locity field generated with a subgrid-scale model collapse under Corrsin scaling as

predicted by Batchelor, Howells & Townsend (1959). The "universal" spectrum in

this case exhibits a wide transition (nearly a decade) between the k -5/3 and k -lr/3

subranges. The corresponding spectra obtained in low-Reynolds-number direct nu-

merical simulations collapse under the Batchelor scaling of Gibson (1968b). Two

possible explanations for this discrepancy exist. The first is that virtually all the

scales of the direct numerical simulation are affected by viscosity and are therefore

not in the inertial-diffusive subrange but rather in a viscous-diffusive region. In

this case the scaling put forth by Batchelor, Howells &: Townsend (1959) would be

expected to break down. The second is that the subgrid-scale model is not accu-

rate enough to capture the physics of the interaction between the predominantly

subgrid-scale strain-rate field and the scalar. It is interesting to note that for mod-

erate Peclet numbers (as opposed to the usually smaller values generated by the

extremely low Prandtl numbers considered here) the subgrid-scale simulations pro-

duce spectra that collapse with the direct numerical simulation results and show

the beginnings of a strain-rate-diffusive k -3 subrange in agreement with Gibson

(1968b). This case is also the only one of those shown in figure 5 that contains a

significant number of scalar extremum points required for the strain-mixing mech-
anism to be effective.

Future plans include extension to higher Reynolds/Peclet numbers by using 1283
simulations and direct examination of the direct numerical simulation scalar fields
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given by (5) with _w = 2.0.

in an effort to observe the mechanisms suggested by Gibson (1968a). Collapse of

scalar spectra from direct numerical simulations on a 128 s mesh with the 643 results

presented here would seem to indicate that the scaling proposed by Gibson (1968b)
may be correct, whereas a tendency towards the "universal" spectrum of figure 6
would favor the Batchelor, Howells & Townsend (1959) theory.

This work was carried out during the Center for Turbulence Research 1990 Sum-

mer School Program. The authors would like to acknowledge many useful conver-
sations with other participants in the program, particularly Robert Rogallo, Parviz

Moin and William Reynolds.
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Length scales and dissipation of
fine eddies in a mixing layer

By Y. Zohar 1, R. D. Moser 2, J. C. Buell a AND C. M. Ho 1

It has been shown that small scale turbulence is produced by the interaction of

the merging spanwise structures (rollers) and the streamwise vortices (ribs) (Huang
& Ho 1990, Moser & Rogers 1990). In this study, we examine the dissipation rate
of the three-dimensional kinetic energy and the length scales associated with the

dissipation rate in a temporally-evolving mixing layer.

1. Introduction

It has been recognized that entrainment of fluids from the two streams into the

shear region of a mixing layer is controlled by the unsteady evolution of the large
coherent structures. The fine-scale mixing of the two fluids is accomplished by the

random small eddies which produce a larger mixing interface area (Ho & Huerre

1984). This paper presents some properties of these fine-scale eddies.
The small-scale transition characterized by the sudden increase of the roll-off ex-

ponent of the energy spectrum near the first vortex merging was reported by Huang

& Ho (1990). They used the Peak-Valley-Counting (PVC) technique to directly de-
tect the small-scale velocity fluctuations and found that the small-scale activity was

initially concentrated in regions corresponding to the cores of the merging rollers
and in the plane containing the streamwise vortices. Hence, they suggested that
the interaction between these two deterministic structures during vortex merging

leads to the production of small eddies. Zohar & Ho (1990) then further developed
the PVC technique to gain more physical insight into the small-scale eddies. They

found that the most probable length scale of the fine eddies is equal to the scale

of maximum dissipation, suggesting that the structures detected by the PVC tech-

nique are responsible for most of the dissipation of kinetic energy. Furthermore, the
maximum strain rate associated with the small eddies was found to scale with the

global strain rate associated with the coherent structures.
In the experiment, the PVC technique was applied to the streamwise velocity

signal recorded by a hot-wire at a single point in the flow field. The length scale
was obtained by converting time into length through the Taylor hypothesis. In the

flow, the eddies are distributed in space, so the length scale determined from a

single point is only a component of the averaged distance between eddies. However,

in a numerically simulated mixing layer, the entire velocity field is readily available.

1 University of Southern California

2 NASA Ames Research Center

3 Center for Turbulence Research
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It is then possible to extend the PVC technique to a 2-D z-z surface (z is the

streamwise and z is the spanwise direction) instead of the 1-D time (or pseudo-
z) trace. Furthermore, the PVC technique can be applied to velocity components

other than the streamwise, and even to other quantities such as vorticity.

The dissipation of turbulent energy is mainly due to the effect of viscosity on small

scales. In experiments, due to the limitation of having only a few sampling points

in space, the study of dissipation has concentrated on time-averaged quantities.
However, using numerical simulation data, the spatial distribution of the viscous
dissipation can be examined.

Several numerically simulated time-evolving mixing layers are available. For the

current study we have selected a simulation which undergoes two pairings. By the
second pairing, the layer has completed the transition to small-scale turbulence.

This simulation is described by Moser & Rogers (1990). The numerical results

reported below were all taken from this simulation at the time of the second pairing.

2. The peak-valley-counting (PVC) technique

The study of fine-scale eddies in the past was restricted to statistical analyses,

however these techniques do not provide the phase and amplitude information of

the small eddies. Huang & Ho (1990) and Hsiao (1985) started to develop a method

of registering both the instant and the magnitude of an event whenever the velocity

signal exhibits a peak or a valley (PVC technique). Although the concept is simple,
it is difficult to distinguish between the actual small eddies and instrument or nu-

merical noise. Recently, Zohar (1990) has significantly alleviated this problem by
applying several conditional criteria.

The PVC technique locates the extrema of the velocity fluctuations induced by

the small eddies. The interval between a peak-valley pair provides a length scale
for the event. Since the velocity difference between the peak and the valley is also
registered, the average strain rate associated with that event can be obtained as
well.

In the current work, the PVC technique based on the 1-D time trace of veloc-

ity fluctuations has been extended to a 2-D plane of velocity data taken from a

computational mixing layer. The stationary points of the velocity field on a given
surface, (i.e. extrema and saddle points) where both directional derivatives vanish

(a/c?z = _9/c9z = 0) are first identified. Noise effects are minimized by eliminating

extraneous stationary points using criteria similar to those used by Zohar (1990).

The stationary points are then connected together in an unstructured mesh using
the greedy algorithm. The length scales and strain rates can then be calculated

from the probability distribution function (pdf) of the distance between stationary

points and the velocity difference between these points.

3. Spatial distributions of small-scale turbulence

The spatial distribution of the velocity fluctuations associated with small-scale

turbulence is represented by the stationary points determined from the 2-D PVC

method. The technique has been applied to all three velocity components. It is
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FIGURE 1. Location of two-dimensional stationary points of (a} u, and (b) v in

the z-z plane at y = O. The stationary points are: ×, minima; o , saddles; and +,

maxima. The spanwise roller is centered in the z domain.

very interesting to note that the patterns of the stationary points in each of the

three velocity components are quite different. In figure 1, the streamwise velocity

fluctuations, u, show higher concentration of fine eddies along the roller core than

in the braid region. Similarly, Zohar & Ho (1990) found in their experiment that

the small-scale activity in the roller core is about twice that in the braid region.

However, the transverse velocity fluctuations, v, have a uniform distribution in the

z-z plane (figure lb). This finding is somewhat surprising and is not yet understood.

Farge et al. (1990) applied the wavelet analysis to the same velocity field. They

also observed that the energy content of the transverse velocity fluctuations at high

wavenumbers is evenly distributed. The spanwise velocity fluctuations, w, have a
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FIGURE 2. Probability density of the wavenumbers ki = 21r/di, where the di

are the separations between stationary points in the (a) one-dimensional and (b)

two-dimensional PVC technique based on: _ , streamwise velocity u; .... ,

cross-stream velocity v; and ........ , spanwise velocity w.

stationary point distribution pattern similar to that of the streamwise fluctuating

velocity, but the number of stationary points is about 50% higher than for the
streamwise component.

4. Length scales of fine eddies

_.I. Length scales o.f velocity fluctuations

The distance, di, between a peak-valley pair yields a measure for the size of the

fine eddies. At the extremum, in the 1-D PVC, the velocity derivative is zero.

Therefore, di is just the distance between zero crossings of the first velocity deriva-

tive. The pdf of the corresponding wavenumbers, ki = 9.Tr/di, is constructed for the

3 velocity components; u, v and w as shown in figure 2a. The pdf curves have a
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FIGURE 3. Probability density of the wavenumbers ki = 27r/di, where the di are

the separations between stationary points in the one-dimensional PVC technique

based on: -- , streamwise vorticity ta_; .... , cross-stream vorticity wv; and

........ , spanwise vorticity wz.

clear sharp peak. The wavelength at the peaks, denoted as L0 = 27r/ko, is used as

the length scale to characterize the size of the fine eddies. Based on the numerical

data, the pdf curves of the three velocity components peak at ko/ko _'2 1, where

ko = 2,r/6o and 80 is the initial vorticity thickness of the mixing layer. Experi-

mentally, the value of this ratio, ko/ko, was found to be about 5. This difference
could be due to the difference in initial Reynolds number between the experiment

and simulation. In the numerical simulation, Re = AUSo/V = 500, but Re = 2000

in the experiment. It is expected that the fine eddies should have a smaller length

scale in the flow with the higher Reynolds number.

Next, the 2-D PVG technique is applied to the velocity components in a hori-

zontal, z-z plane. The pdf curves of wavenumbers based on the length of the line

segments connecting the stationary points are similar to the 1-D results, i.e. there

is a clear peak as shown in figure 2a. The wavenumber at the peak is smaller than

the value for the 1-D case, k°/ko "2_0.7. The di measured by the 1-D technique are

projections of the di measured by the 2-D technique. Therefore, the di obtained
from the 1-D PVC are expected to be shorter than those for the 2-D PVC, at least

in the case of 2-D isotropy.

_._. Length scales for vorticitv fluctuations

Both the 1-D and the 2-D PVC techniques can be applied to other fluctuating

quantities. Vorticity is obviously an interesting quantity to be examined. Due to

noise problems in the vorticity signal, only the results of the 1-D PVC technique

axe presented (figure 23). The peak of the pdf curves of the vorticity peak-valley

wavenumbers is at ko/ko "_ 1.25. This value is larger than the peak value of the

velocity fluctuations. Vorticity is derived from derivatives of velocity fluctuations.
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FIGURE 4. Dissipation spectrum D(k) estimated from equation (2), based on the

velocity spectrum at: --, V = 0; .... , V = 1; and ........ , V = 2.

Spatial differentiation emphasizes the high wavenumber end of the spectrum and

therefore the vorticity length scale is shorter than the velocity length scale. More-

over, velocity fluctuations are detected in the potential flow regions as well, where

the vorticity fluctuations vanish. These potential velocity fluctuations are found to

have longer wavelengths compared to the rotational fluctuations. Nevertheless, the

most probable length scale of the fluctuating vorticity and the fluctuating velocity

components are of the same order of magnitude in this low-Reynolds-number flow.

$.$. A new dissipative acale

The physical significance of the length scale based on the PVC technique has

been pointed out by Zohar & Ho (1990). L, corresponds to the wavelength at the

peak of the dissipation spectrum, D(k). In order to verify this for other velocity

components the dissipation spectrum should be estimated. First, the 3-D energy

spectrum, E(k), is calculated from the 1-D energy spectrum of the streamwise

velocity, F,,,(k), by using the following isotropic relationship,

Then, the dissipation spectrum can be obtained from the 3-D energy spectrum as

follows,

o(t) = t E(k) (2)

The peak of the dissipation spectrum, shown in figure 4, appears at k°/ko _- 0.7.

Indeed, it is equal to the most probable length scale obtained from the 2-D PVC

technique. This suggests that the small-scale eddies detected by the 2-D PVC

scheme dissipate most of the kinetic energy. A similar correspondence between k°

and the peak in the dissipation spectrum was found by Zohar (1990) in his 1-D

PVC experiment.
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5. Strain rates

The PVC technique enables one to estimate the average strain rate associated

with the small eddies. This estimate is obtained by dividing the velocity difference

between adjacent extrema or stationary points, Au, by the length separating them,

Az in a 1-D trace or As in a 2-D plane. Then, the collection of all values of

IAu/Azl or IAu/Asl can be used to construct a histogram for the local strain rate.
These strain rates are normalized by the total velocity difference across the mixing

layer, AU, and the initial instability wavelength, L0. Figure 5a shows the pdf of

the strain rate based on 1-D traces of the streamwise velocity, where the maximum

occurs at a normalized strain rate of 0.6. The pdf based on the 2-D plane of the

streamwise velocity peaks around 1, as shown in figure 5b. This value agrees with

the experimental data based on the 1-D PVC technique.
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FIGURE 6. Spanwise average of the 3-dimensional strain contraction 2SijSij -- ely.
The contour increment is 0.5 and the highest contour level is 8.

6. Spatial distribution of dissipation

Turbulent flow is three dimensional in nature. In order to investigate the dissi-

pation-rate of 3-D kinetic energy, the velocity is first averaged along the spanwise

direction to obtain the 2-D averaged velocity field. The 3-D velocity field was ob-

tained by subtracting the 2-D averaged velocity from the total velocity. Dissipation

can then be calculated from the resultant 3-D velocity. The instantaneous local

dissipation of turbulent kinetic energy can be written e = 2vSijSij, where Sij is

the strain tensor. The spanwise average of e/r, (or strain contraction) is shown in
figure 6. The strain contraction (ely) in the z-9 plane between the rib vortices and

through the rib vortices is shown in figure 7. Also shown is the enstrophy (wlwi)
in the same planes. As would be expected from the spatial location of the small

scales, the dissipation occurs largely in the roller. There is however some dissipation

associated with the braid-region ribs in the rib plane. The enstrophy contours show

that the enstrophy is much more intermittent than the dissipation. Nearly all the

enstrophy hot-spots are associated with significant dissipation, though there is also

significant dissipation in essentially irrotational regions. It is interesting to note

that the volume integral of SijSij over the domain is the same as that of the en-

strophy. Thus, the smaller regions of support for the enstrophy imply (as is visible

in figure 7), that the peak magnitudes are much larger than for e/v.

7. Conclusions

The PVC signal processing technique is indeed a useful tool for studying small-

scale turbulence from a new perspective. The technique has been extended to a

two-dimensional velocity field. The data from the 2-D PVC technique are slightly
different from that of the 1-D PVC technique. The results derived from the numer-

ical simulations confirm the experimental findings; the most probable length scale

of the small-scale eddies is equal to the scale of maximum dissipation and the local

strain rates associated with the small-scale activity are comparable to the global
strain rate, AU/Lo.

The dissipation was seen to occur mostly in the mixing layer rollers, consistent
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FIGURE 7. The 3-dimensional strain contraction 2SijSij = ely ((a) and (c)) and

the enstrophy wi0_i ((b) and (d)) in an z-y plane between the rib vortices ((a) and

(b)) and through the rib vortices ((c) and (d)). The contour increment in 2.5. The

spanwise roller is centered in the domain.

with the observation that the small-scale eddies are located there. The enstrophy is

much more intermittent than the dissipation. There were many dissipating regions

which were essentially irrotational.
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A fractal transition in the
two dimensional shear layer

By Javier Jim_nez 1 AND Carlos Martel 2

The dependence of product generation with Ped_t and Reynolds number in a

numerically simulated, reacting, two dimensional, temporally growing mixing layer
is used to compute the fractal dimension of passive scalar interfaces. A transition

from a low dimension of 4/3 to a higher one of 5/3 is identified and shown to

be associated to the kinematic distortion on the flow field during the first pairing

interaction. It is suggested that the structures responsible for this transition are

non-deterministic, non-random, inhomogeneous fractals. Only the large scales are
involved. No further transition is found for Reynolds numbers up to 20 000.

1. Introduction

It has been realized for some time that smooth velocity fields can generate very

complicated advective scalar distributions (Aref, 1984) and, in particular, that ini-

tially smooth interfaces can become very convoluted. In fact, even if such an in-
terface remains technically rectifiable for any finite amount of time, its geometry
becomes more and more complicated, and we shall give below simple examples in

which it develops fractal properties over a wide range of length scales. When seen at
those scales, its area increases substantially, and if the interface separates two fluids

that are to be mixed by molecular diffusion, the stretching results in a enhancement

of the mixing efficiency. A convenient measure of the complication of the interface

and, indirectly, of its area increase is its fractal dimension (Mandelbrot, 1982).
We will show here that in the two dimensional mixing layer, a transition occurs

at the location of the first pairing interaction, which results in a change of the

dimension of the advected interfaces from approximately 4/3 to a higher value of

5/3. Whether or not this transition results in a increase of mixing depends on other
variables such as the Reynolds and PeclSt numbers, but the change of dimensionality

is intrinsic and does not depend on them. At the highest Pecl_t numbers computed,

the presence of the transition results in a mixing enhancement of a factor of two.
Assume a two dimensional situation in which the interface separating two immis-

cible fluids can be described by a line with a fractal dimension F. Diffusion will

"blur" the interface and generate a mixed region in the form of a strip centered

around the original line whose width will, from dimensional considerations, grow

in time proportionally to W = (Dr) 1/2, where D is the molecular diffusivity. The

resulting strip will have a length L(W) and an area proportional to S = W L(W),

1 Centre for Turbulence Research and Universidad Polit_cnlca Madrid

2 Universidad Polit&nica Madrid
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where the length is a function of the width, W, because of the fractal properties of

the central backbone. In fact, L .,_ W l-F, and S ,_ W 2-_'. If we now repeat the

same mixing experiment with all dimensions constant but with different diffusivi-

ties, the area of the mixed strip and, therefore, the amount of mixed fluid will be
proportional to

S .,_ D 1-F/z .._ peF/_-1, (1)

where Pe = UL/D is the Pecl_t number. This equation contains the "practical"

implication of the fractal dimension of the fluid interface, and we will use it in the

following as a definition for F. An equivalent formulation exist for three dimensional

situations, in which the exponent in equation (1) is replaced by (F - 3)/2.

If the dimensionality of the interface increases at some stage in the flow, nothing in

equation (1) guarantees that for a given Pc, the amount of mixing will also increase.

However, if the diffusivity is reduced, the amount of mixing will increase faster after

the transition and will eventually be enhanced for some sufficiently high Pc. The

assumption in this argument is that the immiscible interface itself is independent of

Pc, either because the velocity field is kept constant among different experiments,

as in the cases in which Pe is increased by varying only the Schmidt number,
Sc, or because the changes in the velocity field are small and irrelevant to the

global geometry of the interface. This seems to be the case in the two dimensional

flows described here but probably does not apply to the mixing transition observed

in three dimensional layers (Konrad, 1977, Breidenthal, 1981), in which the flow

itself becomes considerably more complex as Re increase (Moser and Rogers, 1990).

In those cases, it is still possible to use the arguments given above to explain the

variation of the mixing efficiency with Sc, but the discussion of the Reynolds number
dependence must include considerations of the flow dynamics.

In this paper we describe some numerical experiments on the generation of prod-

uct by a simple chemical reaction in a two dimensional, incompressible, temporally

growing mixing layer. The amount of product is controlled by diffusion, and it will

be taken as representative of the amount of mixing and used as such in equation

(1). The initial conditions are held constant as the Reynolds and Pecl_t numbers

are changed, both together and independently, and the variation in product gener-

ation is used to deduce the fractal dimension of a theoretical interface separating

two immiscible species. The numerical code and the experimental arrangement

are discussed briefly in the next section, and the results are then presented and
discussed.

2. Experimental arrangements

The numerical code is a full Navier-Stokes simulator, developed at the Universi-

dad Polit_cnica in Madrid using the vorticity-stream function formulation in con-

servative form, and includes the transport equation for a passive scalar. It uses a

Fourier spectral representation in the streamwise (z) direction and a fourth order

(Pad_) finite difference scheme in the transverse (9) coordinate. The grid is mapped
to infinity, and the nonlinear terms are computed using a fully de-aliased colloca-

tion scheme. Typical grids use 512 Fourier modes (341 after de-aliasing) and 400
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transverse points. The code solves the initial value problem, starting with a initial

velocity distribution, u(y) = tanh(y). This profile is perturbed initially with a small
sinusoidal transverse deformation of amplitude Ay _ 0.1 and wavelength a = 0.4,

which is close to the most amplified one for the initial Kelvin Hdmholtz instability.

In most of the runs, the computational box contains four initial wavelengths, re-

suiting in the formation of four primary eddies that Inter interact through pairing.
To insure this, small subharmonic and sub-subharmonic components are added to

the initial perturbation.
A dimensionless viscosity is defined in terms of a Reynolds number based on the

half velocity difference across the layer and on half the initial vorticity thickness,

_o_ = 2. The initial distribution of the passive scalar is taken as s = 0.5 (1 +

tanh(y/L,)), and its evolution is controlled by a Schmidt number, So, related to Re
and the Pecl_t numbers by Pe = Sc Re. In most cases, Sc = 1, but some tests were

done with Schmidt numbers in the range 0.25 to 4. The evolution of the scalar is

used to model the behavior of a fast binary chemical reaction, A + B _ P, between

species A and B, each of which is initially assumed to be distributed uniformly in
one stream. Later they diffuse through the mixing layer and react immediately. The

parameter L0 determines the width of the initial mixed region and should ideally
be as small as possible to approximate a sharp interface. Numerical limitations

prevent this, and all our experiments have been done with Lo = 0.3. At the most
unfavorable case of high Pecl6t number, the memory of this initial thickness seems

to be lost by the flow before t = 20, approximately the time necessary for the

formation of the primary Kelvin-Helmhotz eddies.
In the Burke-Schumann limit assumed here, given the local concentration of the

scalar, s, the concentration of product P can be shown to be proportional to

P=2s if s<1/2, P=2(1-s) otherwise.

With this normalization, the maximum product concentration is always locally equal

to one, and the center of the product distribution follows the s = 0.5 isoline. The

product thickness,

f0L"= P (2)

is a good measure of the area occupied by the reaction product, and we will take it
as a measure of the mixed fluid area to be used in computing the fractal dimension

through the arguments leading to eq. (1). Lffi is the length of the computational

bOX.

3. Results

Some typical time histories of the vorticity and product thickness are shown in

figure 1. There are several bumps in the vorticity thickness evolution which mark
the initial roll-up into vortex cores and two consecutive pairings. It is a property of

temporal simulations that the time at which each pairing occurs can be controlled

by varying the amplitudes of the initial subharmouic perturbations. These were
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FIGURE 2. Variation of product thickness with Pecl_t number for different times.

t = 30, 120, (10), increasing upwards. Data as in figure 1, but see text for other Sc.
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FIGURE 3. Fractal dimension of interface computed from figure 2, and from other

similar data sets. (_): Natural layer, two pairings; A: Second pairing inhibited; [] :

All pairings inhibited.
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chosen so as to reproduce as closely as possible the experimental observations in an

unforced half jet (Jim_nez, 1983). The evolution of the vorticity thickness is too

irregular to be described by a linear growth rate, but a least square fit to the lines in

fig. la has a slope of 0.22, which is in reasonable agreement with the experimental

growth rates for tripped shear layers. The evolution of the momentum thickness

also shows bumps, although shallower, and its mean growth rate, 0.14 ± 0.02, is also

approximately consistent with experiments. Later we will discuss briefly simulations

in which the first and second pairings were purposely inhibited. In those cases, the

vorticity thickness grows at the beginning as in the natural case but eventually
levels off and oscillates about a fixed value.

Note that the growth of the product thickness is linear and is little affected by
the pairing. This behavior is typical of all the simulations that were carried out.

The rate of growth is, however, very dependent on Pe, decreasing with decreasing
diffusivity. A plot of 6p against Pe and time is given in figure 2, in which each line

represents a point in time for different Pecl_t numbers, and time increases upwards.

The slopes of these lines are the exponents discussed in equation (1) and can be

related directly to the dimension of the fractal interfaces. The time evolution of

F computed in this way is given by the open circles in fig. 3. It is clear that

a transition occurs near t = 50, which corresponds to immediately after the first

pairing interaction. The second pairing, near t = 100, also induces a slight increase

in F, but a much weaker one, and the dimension seems to asymptote to a value

close to 5/3. Before t : 20, the time of initial roll-up, the measurement of F was

prevented by the effect of the finite thickness of the initial condition for 8, but the

dimension has to approach F = 1 for short times. The two other sets of symbols

in fig. 3 refer to two different sets of runs, in one of which the second pairing was
inhibited, while in the other both pairings were prevented. It is clear that the effect

of the second pairing is small, but that the absence of the first pairing prevents

completely the appearance of the fractal transition. In fact, this latter case seems

to asymptote to a value close to 4/3. The significance of this number together with
the previously cited 5/3 will be discussed briefly below.

Note that the abscissae in figure 2 refer to Pe instead of to Reynolds number. In

fact, several Schmidt numbers are represented in this figure. In most cases, Sc = 1,
but Pe = 1600 was run at Re = 400, Sc=4. AlsoPe =800and Pe = 200 were

both run at Re = 200 and Re = 800. In these last four runs, even if the Reynolds

numbers were quite different and even if the vorticity fields showed appreciably

more visual complication at the higher one, the product thickness scaled almost

exclusively with Pe with variations below 3% and with no clear systematic trend.

Note also that these Re and Pe are actually quite high since they refer to the initial

state of the layer. In fact, when they are reduced to local quantities at the last

stage in the simulation, Pe,0 = AU 5_/D is of the order of 40 000 for Pe = 1600

(the fitted value, 6_ = 0.22t, has been used for this reduction.)

4. Discussion

We have measured the change in time of the fractal dimension of an ideal interface

in a two dimensional mixing layer, and we have related it to the scaling properties
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of product generation with Pecl_t number. We have also shown that this scaling
laws holds independently of the Reynolds number, even for fairly high values of this

latter quantity. Since the effect of Re is mainly on the small scales, this suggests

that mixing in this two dimensional ease is controlled predominantly by the large
coherent eddies. This is confirmed by inspection of the flow fields at high Re and

Pc. The structure of the product is dominated by large folds and structures, with

few small scales in the sense of fine random corrugations. This is also confirmed by

the relatively low values of the fractal dimensions measured. Several investigators
have studied and measured the fractal dimensions of interfaces in three dimensional

turbulence (Sreenivasan and Menevean, 1988), arriving at F ,,_ 7/3, and have jus-
tified this value using models based on random homogeneous fractals. The same

arguments when applied to two dimensional turbulence (Meneveau, private com-
munication) result in F = 2. This would correspond to horizontal lines in figure 3

and is inconsistent with our observations.
In fact, the assumptions of randomness and homogeneity are not necessary for

a fractal model. It is shown in (Jim_nez and Martel, 1990) that both the spirals

generated by the deformation of initially plane interfaces by point vortices and the
"stacks" resulting from the stretching those spirals by a plane strain are fractals.

In fact, the dimension associated to the spirals is 4/3, while that associated to
the stacks is 5/3, which are reasonably dose to those found in figure 3 before and

after the pairing. Both structures are common in the product distributions of the
two dimensional layer. Spirals are generated trivially near the centre of the large

coherent eddies, while stacks appear when the spirals are strained during the pairing

interaction. As soon as the stacks appear, of course, their higher fractal dimension

dominates the product generation of the whole field. It is, therefore, tempting to
conclude that these are the structures responsible for the fractal behavior of the

interface in the two dimensional mixing layer and that the fractal transition is

caused by the straining of the original mixing eddies during the pairing.
Note that this picture is very different from that of the wrinkled interface of a

homogeneous fractal. The fractional dimension comes in this case from the accu-
mulation of turns near the center of the spirals and from the accumulation of sheets

in the central part of the stacks. Note also that this picture is very similar to that

arising from the tendril-whorl mapping studied in (Khakar et al., 1986).

5. Conclusions

In summary, we have shown that the scalar interfaces in a two dimensional plane

mixing layer acquire fractal properties, we have measured their fractal dimensions,
and we have related them to the Pecl_t number dependence of product generation

in a fast binary, diffusion controlled chemical reaction. We have also shown that

those dimensions and the generation of product are fairly independent of Reynolds

number (for AU6,o/r' < 20 000), although they are strongly dependent on molecular
diffusivity, suggesting that the mixing is mostly due to "chaotic advection" from the

large scale eddies. This is contrary to the behavior of the three dimensional mixing

layer, in which a large part of the mixing seems to be associated to longitudinal

vorticity and small scales.
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The fractal dimension undergoes a transition from F ,_ 4/3 to F ._ 5/3, which

coincides in time with the first pairing and which is inhibited when this pairing is

inhibited. The effect of the second pairing is not as marked. We have presented

a model for these dimensions in terms of non-random, non homogeneous, fractal

structures. The transition is then explained as the kinematic distortion during

pairing of structures of one kind ("spirals") into those of another ("stacks"). Finally,

up to the Reynolds numbers quoted above and Pecl_t numbers twice as high, we

found no further transition either in the mixing efllciency, or in the structure of the
vorticity field.
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V. The Combustion Group

This group conducted five projects. The goals were to improve understanding
of the fundamental mechanisms controlling turbulent combustion and to use this

knowledge to construct better models for reacting flows. The bases for these studies
were a two-dimensional code including heat release and three-dimensional codes that

ignore the hydrodynamic effects of chemical reaction.
W. Ashurst used a finite-difference 3D passive scalar code to study the prop-

agation of a premixed flame in three-dimensional turbulence. In this approach,
the flame is a zero-thickness interface located on a level surface of a passive scalar
whose value is computed from a field equation. The turbulence is forced in order

to produce a constant energy flow. Runs were performed on 16s grids to allow

fast post-processing. Statistics of the curvature indicate that most flame fronts are

nearly cylindrical in shape, justifying two-dimensional studies of flame-vortex in-
teractions. It was also shown that out-of-plane strain tends to counteract viscous

effects. The existence of vortical cores which interact strongly with the flame front

was also demonstrated.

Two studies (C. Rutland and S. Cant) used a modified version of the Rogallo (3D

incompressible spectral) code to produce direct simulations of flames propagating in
three-dimensional turbulence with a 1283 grid. This code treats turbulent flames via

passive scalars, thereby limiting it to constant density and precluding consideration
of the effect of the flame on the turbulent flow. Their purpose was to gather statistics

needed to validate and improve models of the Bray-Moss-Libby type for premixed

turbulent combustion. Shape factors of the flame front were computed and indicate

the predominance of cylindrical flames, in agreement with a result of Ashurst (see

above). PDFs of strain rate and curvature on surfaces of constant progress variable

(flame surfaces in this formulation) were computed. Rutland and Trouvd studied the
effect of curvature and Lewis number on flame structure. Most of the results were

not unexpected but provided quantitative data for the first time; an unanticipated

finding is that the temperature behind a flame is affected by the local curvature, a
result of considerable potential importance in the prediction of pollutant production.

Two projects (D. Haworth and G. Kosgly) used a two-dimensional finite difference

program which solves the compressible Navier-Stokes equations. This code takes
into account heat release, variable temperature and density, and variable transport

properties using up to 4002 gridpoints; it was developed at GTR by T. Poinsot
in 1989. D. Haworth wrote a post-processing program to analyze fields produced

by this code. The dominant effect of Lewis number on the local flame structure
was demonstrated. Quenching induced by inhomogeneities representing imperfect

mixing of the gases were investigated in 1D and 2D cases.
The two studies just described were directly comparable and complementary.

Many common results were obtained. For example, both studies show that curva-
ture is more important than strain in controlling the local instantaneous reaction
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rate, but that strain determines the mean reaction rate. PDFs of burnt gases tem-
perature were obtained and reveal large temperature differences when the Lewis
number is not equal to unity.

Only one project (G. Kos_ly, et al.) related to diffusion flames. It studied the

validity of the flamelet assumption for diffusion flames using 2D direct simulations
made with the compressible flow code. Flamelet models assume that the reaction

rate as a function of the conserved scalar and scalar dissipation can be computed

from laminar flames. It was found that for large Dam_kShler numbers (small chemical

times), this assumption is accurate. For more intense turbulent fields (smaller
DarnkShler numbers), the relationship is no longer as precise but remains accurate

enough to be applied in practical situations; KosAly and Mell intend to continue
this investigation. The effect of heat release on these conclusions was examined.

The comparison between 2D variable density and 3D constant density codes for
similar situations was an important feature of this workshop. The results obtained

from the two codes on certain issues eg., the effects of molecular transport and of

thermodiffusive instabilities (Lewis number effects) were quite comparable, justify-

ing the use of the simpler incompressible flow code for many situations. The use

of direct simulations to investigate turbulent combustion is practiced at only a few

laboratories worldwide and the Summer Program added considerably to the body

of results available and contributed to the confidence of the combustion community
in the approach; many original and important results were obtained.

The Combustion Group met twice a week; many of the results are direct conse-

quences of the animated and fruitful discussions that took place at these meetings.

The participants also enjoyed the opportunity to work together on a daily basis.

Thierry Poinsot and Joel H. Ferziger
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Geometry of premixed flames
in three-dimensional turbulence

By Wm. T. Ashurst I

Constant density premixed flame propagation in three-dimensional Navier-Stokes
turbulence has been simulated. The zero-thickness flame model of Kerstein et al.

(1988) has been used. There are two aspects to this study: 1) adjustment of the
large-scale strain rate in order to achieve a constant energy system, and 2) de-
termination of flame curvature. The sampled distribution of curvature indicates

that in most cases the flame has a cylindrical shape, with one curvature at least

three times larger than the other. This implies that realistic chemical reactions in
a flame-vortex interaction may be simulated in two-dimensions.

1. Constant Energy Turbulence

Simulation of turbulent flow at constant energy allows flame propagation in a

statistical steady state. To achieve a constant energy system, a large-scale forcing
scheme was developed. Normal strain-rates in each octant of a periodic cube are

determined at each time-step. Let

0<u>z
a--

Oz

where the subscript on the brackets indicate that the velocity is averaged over
the octant face normal to the z direction; each octant is a cube with L/2 edge

length within a periodic cube with edge length L. Notice that in each direction,
the periodic boundary condition makes the strain in one octant the negative of

the adjacent octant. Let b, c be the strain rates in the y, z directions in the same

octant, then for incompressible flow the sum of strains is zero, a + b + c = 0.

Adjustment of these strains is done in order to maintain constant energy on the

fine-scale grid. If the velocity within the octant is modified by a fraction of the

strain rate, (fa + fb + fc) then the flow will still be incompressible. The new z

component of velocity within the octant is

u(z,y,z)=Uo(Z,y,z)+faz, O< z < L/2

and in the adjacent octant

u(z,y,z) = Uo(Z,y,z) - f a (z- L), L/2 < z < L

1 Combustion Research Facility, Sandla National Laboratories
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and corresponding adjustments of f b and f c in the 9 and z velocity components.
The adjustment factor f is the same for all eight octants and is determined by a

predictor-corrector procedure so that the kinetic energy is constant. Adjustment

with a relaxation time could also be done, in which case the system energy would

have a time variation. This adjustment, the value of f, is small: about one-half

percent change in the octant strain-rate is needed for a 32-cubed system with Taylor
Reynolds number of fifty. (The turbulent kinetic energy is q_/2 = 1.5, the reference

velocity and length scale L is unity, the kinematic viscosity is _ = 0.002.)

These finite-difference simulations yield small-scale strain rates in agreement with

those obtained with the pseudospectral method (Ashurst et al., 1987). The strain-
rate tensor, with eigenvalues of a _>/3 _> 7 and magnitude e2 : a2 +/32 + 72, has

a shape characterized by the intermediate strain rate,/3. The shape is expressed

as/3/V/_-/6, a parameter with bounds of ±1. (For the large-scale normal strains

we use b/v/(a 2 + b2 + c2)/6.) The shape of the strain-rate tensor at a single point

changes from a symmetric distribution of/3 to an asymmetric one as the strain

magnitude increases, the change described by A(e). In the 323 finite-difference
simulations, a value of v = 0.002 matches the trend of A(e) in the 1283 results,

whereas a value of 0.001 does not. Thus, the resolution of the finite-difference work

is deemed adequate. These distributions have the character that the limit case of

two equal strains has vanishing probability. The most probable value for (c_ :/3 : 7)
is (1, 0, -1) at low strain and (3, 1, -4) at high strain. For the large-scale normal

strains this is not so. It appears that the large scale has uniform probability for all
possible shapes.

It is thought that the small-scale strain rate is dictated by the flow pattern as-

sociated with a stretching vortex when the strain is large and by a shearing flow

when the strain is small. The uniform probability of the large-scale is an indica-

tion that all possible flow patterns exist. From a limited investigation, it appears
that one-sixth of the possible directions have very large extensive strains. These

strains appear to be created by a large-scale rotation: two adjacent faces of an

octant have large velocities (inflow, outflow), while the velocities on the respective

opposite faces are small. The differencing and averaging of these face velocities

result in large strain and small convection. The apparently small convection may

be misleading if the actual convection is rotational and not unidirectional. We have
attempted to compare the vorticity structure with the large-scale extensive strains

in order to determine if there is a causal connection. It appears that there may

be, as described below, but larger system calculations should be done. (There is
a possibility that the periodic boundary condition creates a strain which enhances

the vorticity structure in comparison to non-periodic turbulence.)

There are two aspects of the large-scale strain which affect the small-scale flow

patterns: 1) magnitude of the extensive strain and 2) lifetime of this strain. Thus,

the vorticity within those octants will amplify in the extensive directions during

the lifetime of these strains, providing that the vorticity is not convected out of the

octant before significant growth occurs. The vorticity growth caused by a large-scale
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strain a(_') over a time period of t is

_o t=  (0)exp( dr)

These normal strains have a numerical range of 4- 3, while the average of the octant

face velocity, corresponding to the large-scale convection within the octant, has a

range of + 0.7. Because strain is a derivative of velocity, it has more variation than

the convective velocity.
Displacement of the vorticity is the time-integral of the convection velocity and

is an indication of how long a particular vorticity region may reside within the

octant under consideration. The transverse spatial correlation of vdocity gives an

estimated integral time of approximately 0.16, or 120 time-steps. The longitudinal

vdocity correlation decays to 0.3 at a separation of L/2, while a similar correlation
of the octant face velocity has a value of only 0.035. At an octant face, the time

correlation indicates a zero-crossing at approximately three times the integral time.

So the large-scale strain has a long life compared to the integral time.

STRAIN
GROWTH

_0 I I I

8 0.0 0.2 0.4 0.6

_me

FIGURE 1. Evolution of large-scale normal strain in an octant during a 400 time-

step period. The growth of a material line subjected to this strain is also shown.

The convection (dotted line) is more constant than the strain.

Figure 1 presents the time variation of an octant normal strain and the resulting

growth factor over a period of 400 time-steps. For this particular octant, the strain
changes from extensive to compressive during the next 400 step period, and so neg-

ative growth occurs. Examination of the vorticity structure during the first period
reveals that intensification of vorticity does occur. Examination was done by view-

ing the vorticity surface which has a magnitude of one-half the maximum vorticity

value, using the program TLTRB3D (developed at NASA-Ames). Over intervals of
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30 time-steps it is easy to see the changing vortex structure, and in some cases,

the plotting of surfaces with lower enstrophy reveal how the structure is develop-

ing during a growth phase. Over intervals of 100 time-steps it becomes difficult in

some cases to decipher which structure evolved from the previous arrangement of
vorticity.

Observation of the intense vorticity structures in the computed flow field indicates

that their creation may be a result of the extensional large-scale strain, but more
work is needed before this can be considered a firm conclusion.

Flame Model

The zero-thickness, constant-density premixed flame model described in Kerstein

et al. (1988) has been used. A continuous scalar G is convected by the flow and the

flame propagation is accomplished by Huygens mechanism where the flame speed
is a function of strain and curvature

OG

--_ + u. VG = UFIVGI + u'V_G

The flame speed is UF = ULeXp(--LMI¢) where LM = 0.025L is the Markstein

length and t¢ is the local flame stretch. An exponential form is used so that large

stretch can only reduce the flame speed to zero (and not create negative values if the

linear version is used). To insure an upper bound on flame speed for advancement

in the explicit finite difference method, a limit of four is placed on the exponential

term, --LMI¢ < 1.39. With respect to any value of G, the unburnt fluid is located

at smaller values of G. Flame motion can create pockets of unburnt fluid, but not

pockets of burnt. The latter case does occur in the discrete numerics when a local

maximum of G is created; however, these false maxima are not numerous if the

flame speed uL is comparable to the rms velocity q, which is v/3. To help suppress

the false maxima, a dissipation term is added, v' = v/4, see discussion in Ashurst et

al. (1988). This model has the advantage that each numerical grid point contributes

statistical information about the flame since any constant value of G represents a
flame.

3. Intense Vortex Effect on Flame Geometry

Intense vorticity has a tube-like shape, one dimension is greater than the other

two. The cover of PhyJics Today, January 1990 presents a nice view of the intense

vorticity. As a flame approaches such a structure, it becomes wrapped around the

vortex, and so the flame surface is more often like a cylinder than a sphere.

We examine two aspects of the flame surface: 1) curvature and 2) direction of

flame normal with respect to the most compressive strain rate. The flame surface

is described by the unit normal vector n = -VG/IVG I and the two principal

curvatures of the surface are hi = 1/R1 and h2 = 1/R2. Negative curvature

represents a concave flame with respect to the reactants and the local flame speed

uy is increased but limited to 4UL in these simulations. At each grid point, the first
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and second spatial derivatives of G are calculated and the elements of the curvature

tensor are formed

1 _ OG OG 02G

02G 1 + 2._ _ Ozk 0z_0zhhij- Ozicgzj g _ h=l

where g = ]VG[. This tensor has two real eigenvalues hi,h2 and one eigenvalue

equal to zero. Thus, the determinant is zero and the two principal curvatures

may be found from a quadratic equation. The calculated determinant of hij is
zero to within machine round-off. The divergence of the surface unit vector is

V. no = hi + hz, where the subscript G indicates the normal for a particular value
of G. Note that the divergence of the field variable unit vector V. n(x; G) is not the

same quantity, and so the expression given above for hij must be used. The flame
stretch is _ = -(n. e • n)/u_, + hi + h_ where e is the strain-rate tensor.

A convenient way to describe the local flame shape is a ratio of the principal

curvatures: the smallest curvature (in magnitude) is divided by the larger, yielding

a result bounded by +1. A spherical shape has equal curvatures, a zero value is that

of a cylinder (one curvature is zero), and a spherical saddle point has curvatures
of equal magnitude but opposite sign. Pope et al. (1989) have calculated and

displayed the curvature ratio of material elements in this manner. Figure 2 presents
the distribution of curvature shape for a laminar flame speed of uL = 1; the rms

velocity is 1.73. The distribution is from four realizations, 200 time-steps apart, in
a 323 flow. The flow at zero time for the scalar has already evolved 4,700 time steps

from a random initial condition. Changing the value of q/uL from 0.87 to 3.5 does

not change the shape of the distribution. The flame results agree with the behavior

of material points in having a vanishing probability for spherical shapes and a most

probable shape to be that of a cylinder. Fifty-six percent of the flame data have a

shape factor within + 0.3, indicating that one radius is at least three times larger
than the other.

The distribution in Fig. 2 overlays the distribution obtained by Cant et al. (1990)

from the spectral simulation of constant-density, finite-rate, finite-thickness flame

propagation. The best match is with the curvature that occurs on the surface that

has a progress variable value of 0.1, the non-reacting, preheat zone of the flame.

In comparison, the larger progress values have higher probability on the negative
side and lower on the positive, but all results have the same peak probability. This

trend indicates a different response when reaction, diffusion and convection operate

as opposed to only diffusion and convection. The assumed strain-curvature effect

on the propagation of G appears to describe the response of the leading edge of a

finite-thickness flame.

To explore the principal curvature in more detail, we sort the data by increasing
hi value and carry along the associated h2 value. Breaking the data set into 16
bins of hi and averaging yields the curve shown in Fig. 3. The rms value of hz in

each bin is not small, -_ 8 over most of the data range. Because of the ordering of

the eigenvalues hi > h2, there are no points above the line hi = h2, shown dotted

in Fig. 3. Each symbol represents 1/16 of the data and we can see that about 2/3



250 Win. T. A_hur_t

O-

O

m _

n
i

J s
m

i
! 0

J 0

0
| a

m i

m !
a s

/ '

#e w

I I I --I

-0.5 0 0.5 1

Curvature Ralio

FIGURE 2. Distribution of flame surface shape, accumulated in bin widths of

0.1. The curvature ratio is the smaller (absolute value) divided by the larger

(h,,_in/h,_az = R,,_i,_/R,,,,ffi). A ratio of unity corresponds to a sphere and a ra-

tio of zero is that of a cylinder. Material element results from Pope et al. are shown
by dashed line.

of the data falls along a line of h2 = hi - c, where the values of c are 7.7, 9.9 and

11.2 for flame speeds of uL = 2, 1 and 1/2, all with q = 1.73. The offset from the

origin increases with the ratio of q/uL. The cylindrical shapes are associated with

results along the two axes - about twenty percent are from the region where hi _ 0,

with h_ < 0 which corresponds to a flame concave to the unburnt gas. There is

also a smaller contribution for cylindrical shape at large hi, where the average h2

is approximately zero. This would be flames concave to the burnt gas. The saddle

shape is given by points close to the line h_ = -hi. The data crosses almost normal

to this line. The conclusion from Fig. 3 is that when one curvature is large, then
the average value of the second component is small.

A previous investigation of strain rate revealed that vorticity is more likely to

be in the intermediate strain direction while the pressure gradient and a passive

scalar gradient align in the most compressive strain direction (Ashurst et al. 1987).

Figure 4 presents distributions of alignment of vorticity and the flame normal. The

vorticity alignment agrees with the previous pseudospectral results.

The propagating flame appears to have properties similar to a passive scalar.

Similar to the behavior of the scalar gradient, the normal to the flame surface has

a high probability to align with the most compressive strain-rate direction. This

probability increases if the alignment is conditioned on the large strain regions,

but decreases if the condition is based on having a large vortical magnitude. This

effect indicates that the large enstrophy regions have small strain rates and so, as

the flame propagates through the vortex core, it loses alignment with the strain
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FIGURE 3. Principal curvature of flame indicates that when one curvature is very

large, the other is small. By definition, hi > h2. Averages were obtained by sorting

data according to value of hi, each symbol represents 1/16 of the data set.
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FIGURE 4. Distribution of alignment with strain rate for vorticity (fl • _, solid

line) and for flame normal (7" n, dashed line); gathered in bins of 0.1 in cosine of

the angle.
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directions because the strain magnitude is weak at the vortex center.

The conceptual picture is that of a stretching vortex with the large strain rate

in an annular region outside the vortex core. Thus the large curvature of the flame

occurs outside the vortical core, the location where the shearing strain is largest.

4. Conclusions

The implications of this three-dimensional constant-density flame propagation

simulation is that detailed chemistry may be simulated in two-dimensional flow

because in most of the sample points the flame has a cylindrical shape. In a two-

dimensional simulation, there should be a weak out-of-plane strain to represent the

three-dimensional stretching effect. This stretching effect counteracts the diffusive

nature of viscosity upon the vorticity, and so the vortical core can remain intense

and small during the propagation of the flame in the neighborhood of the vortex.

Simple single-step, finite-rate reaction were used in the two-dimensional work by

Rutland & Ferziger (1989) and that by Ashurst _z McMurtry (1989). Detailed

chemical kinetic simulations would reveal if curved, strained flames have a different

structure than steady-state plane strained flames.
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of turbulent diffusion flames

By W. E. Mell 1, G. Kos_ily 1, O. Planche 2,

T. Poinsota_ AND J. H. Ferziger 2

In modeling turbulent combustion, decoupling the chemistry from the turbulence

is of great practical significance. In cases in which the equilibrium chemistry model

breaks down, laminar flamelet modeling (LFM) is a promising approach to decou-

piing. This report investigates the validity of this approach using direct numerical

simulation of a simple chemical reaction in two-dimensional turbulence.

I. Introduction

Modeling turbulent combustion is a formidable task since the equations satisfied

by the mass fractions and temperature are coupled with the Navier-Stokes equa-

tions, and the nonlinearity is very strong. The laminar flamelet model (LFM) is a

powerful technique for decoupling the chemistry problem from the turbulence prob-

lem (Williams 1985, Peters 1984,1989). Our goal was to investigate the validity of

LFM in turbulent diffusion flames via direct numerical simulations.

Recent laboratory results of Barlow et al. (1990a,b) offer new insight into the

validity of LFM in hydrogen and methane flames. These measurements provide

simultaneous point data on species mass fractions and temperature. The interpre-

tation of the data is, however, hindered by lack of simultaneous information on

the scalar dissipation field (X). Information on the latter quantity is of fundamen-

tal importance for LFM validity investigations (Bilger, 1989a,b.) Since in direct

simulations the scalar dissipation field is calculated along with all other relevant

quantities, DNS provides a unique tool for studying LFM validity.

2. Background

In what follows, ]_(i = 1,2,...,N) and T stand for species mass fractions and

temperature, respectively. Z is the mixture fraction defined, for instance, via el-
ement mass fractions and X = 2DVZ • VZ is its dissipation (Bilger 1982). The

present investigations are restricted to the chemical scheme

F + rO --, (r + 1)P.

1 University of Washington

2 Stanford University

3 Center for Turbulence Research
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The reactants are initially segregated. Since the initial mass fractions of F and O are

assumed equal, the stoichiometric value of the mixture fraction is Z,t = 1/(1 + r).
The instantaneous stoichiometric surface z is implicitly defined by Z(z, t) = Z,t.

LFM can be derived by introducing a local orthogonal coordinate system at-

tached to the instantaneous stoichiometric surface (Peters, 1984). By a change of
independent variables, the normal coordinate becomes Z. The other two variables

are perpendicular to the mixture fraction coordinate and tangent to the stoichio-

metric surface. Following Williams (1985), we can write the equation satisfied e.g.
by the temperature in these coordinates as

OT 1 02T

p--_ + pV.L "V_LT = wT + _PX-o-_ + V_t. . (pDV.L T)

- pDV.L(In[VZ[). V_LT.

(1)

The subscript _L identifies two-dimensional vectors locally perpendicular to VZ. If

the reaction takes place in a thin layer in the vicinity of the stoichiometric surface,
then the first two terms on the RHS of equation (1) become dominant, i.e.,

1 O2T

WT _ --_,OXoz 2 • (2)

and, locally, X = x( Z, t) (Peters, 1984).

The production term (WT) can be expressed in terms of the variables T and

Z. Peters (1984) assumes that in the coordinate system fixed to a point on the

instantaneous stoichiometric surface, X depends on t only through Z and writes the
scalar dissipation as

X = X,,f(Z), (3)

where X,t is the value at Z = Z,t. The function .f(g) represents the dependence of

X on Z. In the LFM approximation, eq.(3) is modeled by

x = x.,/,(z). (4)

where fl(Z) is the distribution of x along the stagnation point streamline in laminar

counterflow combustion in terms of the coordinates introduced above (Peters, 1984).
Eq.(2) is then identical to the ODE satisfied by the temperature along the stagnation

point streamline in laminar counterflow (Spalding, 1961). Its solution is, therefore,
the laminar one which can be written

T = Tt(Z, Xo,). (5a)

The same argument shows that the mass-fractions can be approximated by

= Y/(Z, x.,). (sb)



Laminar flamelet modeling of turbulent diffusion flames
257

Equations (ba,b) can be rewritten using eq.(4) as

T = = (6)

Equation (6) says that in a turbulent flame T and l_ depend on x,t through Z and

X. While in the turbulence Z(x,t) and X(X,t) are random functions, the Z and

X dependence of T and Yi is modeled identically in turbulent and laminar cases

(Peters, 1984).
Several authors (Bilger, 1989a; Kuznetsov and Sabelnikov, 1990) arrive at a sim-

ilar, but not equivalent, result:

T = T(Z, X), Yi = l_(Z, X). (7)

Equation (7) also states that T, Yi depend on x, t through Z, X. However, it is

not assumed that the dependence of T, l_ on Z, X is related to laminar flow. For

various predictions regarding the functional forms of T(Z, X) and Yi(g, X), refer to

the works of Bilger (1989a) and Kuznetsov and Sabelnikov (1990). Physically, the

scalar dissipation in eq.(7) represents the influence of the local Damk6hler-number

(Dax) defined in terms of the local turbulent time scale r = 1/X (Peters, 1984;

Pope, 1990). For X _ 0,Dax --} oo, therefore, both eqs.(6) and (7) become the

equilibrium chemistry result.

Equations (2) and (4) become valid if the flame is "sufficiently thin". (For thin

flames X _ X°t-) This means that LFM validity improves with increasing values

of the Damkbhler (Da) and Zeldovich (Ze) numbers. (Throughout this paper Da

denotes the Darnkfhler-number defined via the initial large eddy time. This Da is a

global parameter to be distinguished fromDax, the local parameter defined above.)

It is important to distinguish between the equilibrium (fast) chemistry approach

and LFM modeling. LFM modeling is intended to replace equilibrium modeling

when Da is not large enough to justify use of the latter. A typical LFM application

is the modeling of the free-radical superequilibrium close to the nozzle in a H2/air

jet flame (Bilger, 1989a). From a practical point of view, researching LFM validity

involves determination of the conditions under which Da is large enough for LFM

validity but too small for application of the equilibrium chemistry approach.
In order to derive eq.(2) from eq.(1), one has to assume that the radius of cur-

vature of the flame is much larger than its thickness (LR). The condition of LFM

applicability should compare LR to another length-scale. Bilger (1989a) suggests

that La << r/is necessary (7? = Kolmogorov-scale, Se _- 1). Peters (1989) formulates

a validity condition which appears not to be related to turbulence length scales. The

present work represents a first step in the investigation of LFM validity via DNS.

3. The basic equations. Numerical method

The direct numerical simulations were made using a direct numerical simulation

code for reacting flows. The original version (Poinsot and Lele, 1989) was extended

to diffusion flames. The Mach-number was kept low (Urm,/C < 0.05) SO that dilata-

tion is predominantly due to heat release of chemical reaction. The code solves the
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FIGURE l. Initial scalar field and boundary conditions, a) boundary conditions.
b) initial scalar distributions.
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full Navier-Stokes equations in 2D using an explicit scheme with accuracy of sixth

order in space and third order in time. In the present application, Sc = Pr = Le = 1

and p = po(T/To) b where b = 0 for constant transport properties mad b = .76 for

variable properties. The chemical scheme is single step and irreversible.

The fluid dynamics equations solved are:

Opht

Ot

Ogp OpUi _ O,
_+ azl

#pUi _pUiUj #__p_p__ _7"ij

Opui(ht -F p) OuiTij Oqj + Ce_o,

+ Ozl - Ozj Ozj

OpY/ cgpuiY! 0 OYI

OpYo Opu_Yo 0 OYo_

All of the notation is standard.

The reaction rate is:
Ib = Ap2YIYoe -ze/r. (8)

The mixture is a perfect gas with constant molax mass and 7 (ratio of specific

heats)= 1.4. All velocities are non-dimensionalized by the speed of sound in the

unburnt gas, and the temperature is non-dimensionalized by (3' - 1)T0, where To is

the temperature of the fresh gases. The heat release parameter Ce is the heat of

reaction per unit mass of fresh gases. Ze is the nondimensional activation tempera-

ture. The heat flux is qj, ht is the total energy density, and Y! and Yo are the mass

fractions of fuel and oxidizer. All the calculations axe performed on a regular mesh

of 271x271 points in a square domain whose side is the reference length.

The code simulates a 2D, isotropic, decaying turbulent velocity field whose initial

energy spectrum is determined by the initial value of u_m, and the wavelength of

the energy containing eddies (ke).

32 /'2u,.,_o, k ,, ezp(-2( )2
: )

The initialization of the scalars is performed in two steps. First the analytical

solution of the one dimensional diffusion equation with infinitely fast chemistry is

used to specify the initial species and temperature distribution. The velocity and

scalar fields axe initialized after the initial pressure wave has left the domain.

The boundary conditions are periodic in the y direction and non-reflective in the

x direction (Poinsot and Lele, 1989). Figure 1 illustrates the initial conditions of

the scalaxs and the boundary conditions. The initial large eddy Reynolds number

is 200.
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The mixing process in two dimensional turbulence differs from that in three di-

mensional flow (Lesieur, 1987). This means that caution must be held in extending
conclusions drawn from diffusion-flames from 2D studies to 3D. Our results will

demonstrate that some important features connected with LFM validity can be

captured in 2D. The present 2D studies are preliminary investigations.

There are advantages to 2D simulations of turbulent reacting flows. With the

computer facilities presently available, it is not feasible to perform 3D calcula-

tions which account for dilatation, complex chemistry, non-unity Lewis-number,

and temperature dependent transport coefficients. We believe, therefore, that 2D

simulations -if interpreted carefully- can offer valuable insights.

4. Results and Discussion

Figures 2a and 2b are scatter plots of product mass-fraction (Yp) versus mixture

fraction (Z) for a flow without heat release (r = 1, Zot = 0.5) for Da = 5000

and Da = 400, respectively (Da is defined with the initial large eddy time). In the

equilibrium chemistry limit, Yp = Yp(Z) and Yp(Z = 0.5) = 0.2. (The mass fraction

of the diluent is 0.8). The vertical width of the cloud of points and the deviation

of the peak of the envelope from 0.2 measure the deviation from equilibrium. As
expected, the higher Da case is closer from equilibrium.

The internal structure of the two clouds can be seen more closely in Figs. 3a

and 3b. The symbols indicate different values of x/2D, the scalar dissipation (see

legend in Fig. 2a). Fig. 3a exhibits, from top to bottom, a characteristic layering

according to the local dissipation. The layers correspond to increasing values of X •

This behavior is plausible since the local DamkShler-number (Da×) decreases with

increasing scalar dissipation. The behavior in Fig. 3a is consistent with eq.(7). We

believe, however, that further research is needed for full corroboration of eq.(7).

The layering of the data points is present in Fig. 3b but less conspicuous than in

Fig. 3a, which is consistent with Fig. 3b representing a lower Da case.

We now turn to the discussion of whether our data are consistent with the LFM

prediction of eq.(6). In order to investigate this problem, one has to compute the

mass fractions along the stagnation point streamline in laminar counterflow. In the

isothermal, incompressible case (r=l) the equations read (Spalding, 1961):

1 d2Y_ _ t

1 d2g l l l
: AYSYb,

1 d2Y_ -2AY(_Y_.,=

x :

(9a)

(95)

Here A is the reaction rate constant appearing in eq.(8) . The strain rate a (u =
az,v = -ay) is related to X,t via a = 7rx, t.
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FIGURE 2.

t= = 0.5 with r = 1. (Here _ is the initial large eddy time.)at T
legend shows the values of _ (b) Da = 400.

Product mass _action vs. mixture _actlonfor different values of2-_D

(a) Da = 5000,
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FIGURE 3. Product mass fraction vs. mixture fraction for the cases in Figure 2

near Z = Z, = 0.5 (a) Da = 5000, (b) Da = 400. The lines show the laminar

counterflow prediction I"_(Z,x) for different values of x/2D. The bottom, middle

and top lines correspond to x/2D = e s, x/2D = ee, x/2D = e 4 respectively.



Laminar flamelet modeling of turbulent diffusion flames 268

Solution of eqs.(9a,b) with boundary conditions at Z = 0 and Z = 1 provide

yo l ' z t Z for a given value of X,t. In order to compare the laminary._,r_, versus
counterflow predictions to the Fig. 3a,b data, we need ypi versus Z parameterized

with X rather than X,t- _'ZP(Z,x) can he generated from Y_(Z,x,t) from eq.(Db)

which computes X from a given pair Z, X,t pair.

The lines in Figs. 3a,b indicate Ypl (Z, X) for different values of x/2D. According

to the LFM approximation, the laminar result for x/2D = e s should approximately

coincide with the boundary between the lowest and the next lowest layer. Contrary,

all the laminar lines lie above the boundaries where LFM expects them to appear.

The deviation between the data and the LFM expectation is smaller in Fig. 3a than

in Fig. 3b. Figure 4 shows the reaction rate contours for Da = 5000 and Da = 400

• Naturally, the flame is thicker at lower Da. This accounts for the worse LFM

prediction in Fig. 3b than in Fig. 3a. However, the reaction regions in both cases
are much wider than the smallest turbulence scale in these flows (Lesieur, 1987).

Bilger's (1989a) validity criterion is not satisfied; there are turbulent eddies within

the flame. The deviations from laminar behavior are, therefore, not unexpected.

While Fig. 3 shows that LFM predictions are not in perfect accord with the data,

it also shows that the laminar model may contain a sufficient portion of the truth

to predict the average mass fraction with reasonable accuracy.

It is important to distinguish clearly between physical and predictive validity.

Physical validity means that the turbulent flame indeed consists of laminar flamelets;

predictive validity means that the model is robust enough to predict correct aver-

ages. The discussion based on Figs. 3a,b concerns the physical validity of the model.
One measure of the predictive validity is the correlation between the average prod-

uct mass-fraction (< Yp >t ) and its LFM estimate:

fo°° fol Y_(Z,x)P(Z,x;t)dZdx •

Here P(Z, X; t) is the joint pdf of the mixture fraction and its dissipation. Investi-

gation of the robustness of the model is an important task for the future.
LFM should improve with increasing DamkShler number. Since for any given

value of A in eq.(8), the DamkShler number increases in time, one expects better

agreement between LFM and the data at later times• Since LFM is intended to

replace equilibrium chemistry modeling, it is critical to investigate whether LFM

becomes valid before the equilibrium limit sets in.

Figure 5 shows Yp vs. Z for different values of x/2D at Da = 5000 for a case

with r = 3, (Z,, = 0.25) • Since the initial distribution of the scalars is the same as

before (cf. Fig.l), globally the fuel and oxidizer are not in stoichiometric proportion.

The layering which appears in Fig. 3a is also present here. Comparison of Fig. 5 to

Fig. 3a shows, however, that the highest values of X are less important when r # 1

(Note, for instance, the different number of points in the e s < x/2D < e 1° interval
in the two graphs). To clarify this result, in Fig. 6 we show the joint pdf of Z and

X at approximately the time of the previous figures. For this no heat release case,
the instantaneous spatial distributions of the mixture fraction and the dissipation
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FIGURE 4. Typical reaction rate contours for the two zero heat release cases,
(_ = .5)(a) Da=5OOOand (b) Da=400.
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are independent of the chemistry. The joint pdf of Z and X is independent of the
chemistry as well.

Figure 6 demonstrates that the mixture fraction and its dissipation axe not inde-

pendent random variables. Higher values of X appear with higher probability near

Z = 0.5 than near Z = 0.25. The reduced importance of the highest dissipation
values in Fig. 5 vis-g-vis Fig. 3a is, therefore, due to the change in Z,t. This means

that the Damk6hler number within the reaction zone is larger for Zot = .25 than

for Z°t = .5. This effect may have an important influence on LFM validity. Since

for real flames, Z,t is usually quite small (Z°t = 0.0284 for H2/air, Z°t = 0.055 for
CH4/alr), further investigation of this issue is clearly warranted.

Figure 7a shows a scatter plot of product mass fraction versus mixture fraction

for a zero heat release case with Da = 260 and Zst = 0.5. Fig. 7b exhibits a

corresponding compressible heat release case (Ce = 3, Ze = 7). The chemical rate

constant A used in the case shown in Fig. 7b is such that Da(Tc) = 260, where

Tc is the adiabatic flame temperature. Since T < Tc and Da(T) is proportional
to ezp{--Z, T-_/_}, the heat release case is farther from equilibrium chemistry than
the no heat release case. The most striking difference between the two cases lies

in the influence of the high dissipation values. Dilatation due to the exothermicity

evidently diminishes the gradients, thereby decreasing the probability of high val-
ues of X (Spalding, 1961; McMurtry, Riley and Metcalfe, 1989). The probability

density functions shown in Fig. 8 further demonstrate this effect. It seems, there-
fore, that heat release increases the local Darnk6hler number within the reaction

layer and thereby enhances LFM validity. While this effect can be important, its
investigation in two dimensions is questionable. The distribution of the scalar dis-

sipation is strongly dependent on the turbulent mixing process. This effect should
be investigated further using a 3D simulation code which accounts for dilatation.

The case shown in Fig. 7b accounts for dilatation due to heat release but does

not consider the temperature dependence of the transport coefficients. Figure 9

exhibits a case with temperature dependent viscosity otherwise identical to the Fig.
7b case. The flow is less turbulent which reduces the largest values of X.

5. Conclusions

The incompressible results indicate that the deviation of the species mass fractions

from their equilibrium behavior depends on x and t through the Z and X variables.

In the LFM approximation, the dependence of the mass fraction on Z and X is

modeled via laminar counterflow. The data for a 2D turbulent non-premixed flow
show systematic deviations from the LFM predictions. However, the results show

that LFM modeling improves as the width of the reaction layer becomes thinner.

It was also found that the maximum scalar dissipation in the reaction zone de-

creases as Zst decreases. Since lower values of the dissipation correspond to higher
values of the local Damk6hler-number (Da× = A/X), it is expected that LFM will

improve with decreasing Z,t. This effect is desirable since Zst is quite small in real
flames.

It is important to realize that LFM may predict the averages accurately even when



Laminar flamelet modeling of turbulent diffuaion flameJ 207

°tlII.I _ , _'"_' li"z "'_,

i" i[.IIaI'II I =I _ iea I, f_,- iii._l

-I i I_ MN II • m. q _ _ II I_ I

M tt_._N I N _M_ t'_ u 4 N I

' e..*t , ._* _ °- ° ° _,a_- = I
.I *'° • • o- 4, _ ° *. , #@,. #,N

• 0° • elb _••• * • _ •

0 4) ¢ i) 0° °°°° _,_ e• 4)_0

O. L4. • .,e ° e* ° _ ,o • * °

.t_ ** " ° f•.e e. °

O. k3 _e ¢,

1
O.tt

O.'t5 0.'$6

• @°
o • • •

• °
• °o

• ° Q @

°

o

°'1
It".,1,,, ,,.-,,.._ _. - .-, , . .,--."_.",1

1- .._: .. " . k" ,. _.'t
o_.1. ".'"_" " - -. • • -" --." "'1

• bN •N •0 N • •

I " " . " " " "" "N " "1

I : :'"-'.I
_.:_J •o e ,z. I

O.OB

o._ o.,e o'._s o._ o[s_ a'.s2 a.sz o.s_ o._0.05

_._5 0._6

Z

FIGURE 7. Product mass fraction vs. mixture fraction (Da -_ 260, _ = 0.5) (a)

without heat release, (b) with heat release.



268

FIGURE 8.

of Figure 7.

IV. E. Mell, G. Ko_dly, O. Planehe, T. Poinaot, _ J. H. Ferziger

O.Ott

O.Ot2.

a.m0- H--_T RG._._ /
....................................... ." o,o

_3 HfJ_ _[t.D_S[ / ,"
.°' t

a.ooe ........................
:" ,*

./ i

f

O. OOS o ;," "°

O.O_t

' -1.". o'°.e

/ *.'%°:

0.002

0. _nQ

log z

_'..." .

. ..,.
/ '-

,, ', !

,' ;.:

It
_t

"k

t I
t I

; i

i',

t _

: i

: i
t .

; i
; t

8 S 7 D S LO

Probability density function of the scalar dissipation for the two cases

I _IP I m am _.m'--,' --- I • li i
o..6-] ,_l,,,dL-_=_, _ _ _,., ,j,.=._, ,,,== . ,=rj

r.:cjbl
hl-k-l_ t --a i _i i 0 • )ill i lm I i -- i

I _ri .e s 1M X mm ". __r it ,,_m_.,mm. i _i

/ " " " " " ] " 1 "1

0.].2

0.;[

_.[_

_._'g

N_ N 14 _. N )N N _4 N NM

M M X X N N N /"1 N

M N NN

X

N

_t

XM

_._: o._s o._' o._ o'._ o._ 0'.sl o'.S2 0.5'3 o._,_ _._

Z

FIGURE 9. Product mass fraction vs. mixture fraction for a case with heat release

and temperature dependent viscosity (Da _ 260, _ = 0.5).



Laminar flamelet modeling of turbulent diffusion flames
269

the turbulent flame does not consist entirely of laminar flamelets. The investigation

of the robustness of LFM is one of our major future tasks.

Comparison of the incompressible results to compressible high-heat release re-

suits confirms the expectation that dilatation smooths the gradients and thereby

diminishes the probability of appearance of large values of X- This increases the

local DamkShler number in the reaction zone. While this effect may enhance the

validity of LFM, we believe its study requires 3D investigation.
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Statistics for laminar flamelet modeling

By R. S. Cant I & C. J. Rutland 2 & A. Trouv_ 3

Statistical information required to support modeling of turbulent premixed com-

bustion by laminar flamelet methods is extracted from a database of the results of

Direct Numerical Simulation of turbulent flames. The simulations were carried out

previously by Rutland (1989) using a pseudo-spectral code on a three-dimensional

mesh of 128 points in each direction. One-step Arrheuius chemistry was employed

together with small heat release. A framework for the interpretation of the data is

provided by the Bray-Moss-Libby model for the mean turbulent reaction rate. Prob-

ability density functions are obtained over surfaces of constant reaction progress

variable for the tangential strain rate and the principal curvatures. Further results

reveal details of the interaction between strain and curvature. New insights are

gained which will greatly aid the development of modeling approaches.

1. Introduction

It is widely recognized that in most cases of practical interest premixed turbulent

combustion occurs in the flamelet regime, in which all chemical reaction is confined

to thin, highly-wrlnkled interfaces separating unburned reactants from fully-burned

products. When the thickness of the interface is smaller than the smallest length

scales present in the embedding turbulence the internal structure is that of a laminar

flame subjected to the effects of straining and curvature. Models exploiting the

laminar flamelet approach have been available for some time and have achieved

some success in the representation of experimental data. Among these is the Bray-

Moss-Libby model (Bray, Moss and Libby, 1985; Cant and Bray, 1988) in which the

laminar flamelet approach is used to build up a formalism capable of simplifying

the closure of a full second-moment transport model. A consequence of the strict

application of the laminar flamelet approximation is that the model for the mean
turbulent reaction rate becomes decoupled from that for the turbulent transport

and may be considered as an essentially separate modeling problem.

Information required for the reaction rate model includes the behavior of the flame

surface area and the response of the laminar flamelet chemistry under the influence

of strain and curvature. A balance equation for the former quantity is currently the

subject of much modeling activity (Cant, Pope and Bray, 1990; Candel and Poinsot,

1990) while the latter is obtained in idealized circumstances using full-chemistry

laminar flame calculations. The results of such calculations may be stored in a

1 Cambridge University Engineering Department, Cambridge, U.K.

2 University of Wisconsin-Madlson

3 Center for Turbulence Research
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laminar flamelet library for later interpolation by a turbulent model code (Cant,

Rogg and Bray, 1990). Once again, the parameterization of the library requires
that the strain and curvature be well characterized in turbulent flows of interest.

Experimental techniques are not yet sufficiently advanced to probe a flow field

in three dimensions for the velocity and for indicators of the chemistry, but Direct

Numerical Simulations offer the possibility for complete information albeit on small

samples of the field at low Reynolds numbers. Additional compromises are necessary

in large-scale sampling where the main objective is to resolve the flame to a degree

sufficient to measure its response to turbulence (Rutland, 1989). The limitations of

Direct Simulation do not present a serious obstacle where the information required

relates essentially to the small scales. This is the case in flamelet combustion where

the flame thickness is by definition smaller than the smallest scales present in the

embedding turbulence and small-scale straining and curvature are expected to play
an important role. This view is supported by the Direct Simulation results of

Pope (1989,1990) for the straining and curvature of material surface elements in

a turbulent flow. The present calculations are similar but make use of a fully-

connected flame surface with chemical reaction and a finite propagation speed.

2. Model formulation

The Bray-Moss-Libby model formalism may be divided into two distinct parts

linked through the consistent application of the laminar flamelet approximation.

The transport model involves first-moment equations for pressure (continuity), mo-

mentum and reaction progress variable together with a full second-moment closure

involving separate balance equations for the six independent Reynolds stress com-

ponents and for the three components of the Reynolds flux of reaction progress

variable. Details of the development and application of the transport model may

be found in Bray, Moss and Libby (1985) and in Cant and Bray (1988). The model

for the mean turbulent reaction rate model is based on the flamelet expression

pRSgIo(a,h) 

where _ is the flamelet surface area per unit volume and p_S_Io is the reaction

rate per unit surface area composed of the unburned density pR, the unperturbed

laminar flame speed S_ and a correction factor/0(a, h) accounting for the effects

on the laminar flame speed of strain a and curvature h. A balance equation for

based on an exact equation (Pope, 1988; Candel and Poinsot, 1990) and consistent

with the remainder of the model is currently under development (Cant, Pope and

Bray, 1990). For the moment this quantity is modelled by an exact expression

derived by considering the spatial analogue to a time series obtained by measuring

instantaneous progress variable at a fixed point in the flame brush. A square-

wave is formed by the transitions between burned and unburned states encountered

in passing along a mean contour of progress variable superimposed on a single

realization. The expression is (Bray, Libby and Moss, 1984)

_yL v
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where _ is the mean progress variable, 9 is a constant derived from the pdf of crossing

lengths and o_u is the mean cosine of the angle between the mean contour and the

instantaneous flame at the crossing point. The length scale Ly is the integral length
scale of the flamelet crossing process and may be interpreted as the principal large

length scale of the flame.
Modeling of the reaction rate per unit surface area currently involves the use of a

laminar flamelet library (Cant, Rogg and Bray, 1989) containing S_ as a function of

pressure and reactant temperature, and/'0 as a function of the strain rate aT in the

plane of the flame. The data for S_ and I0 has been obtained by calculations of one-
dimensional laminar flames in a fresh-counter-to-burnt counterflow geometry using

full chemical mechanisms. It is implicitly assumed in the present model that strain

alone is sufficient to characterize the combined effects of strain and curvature on

the laminar flamelet. The local mean strain rate is modelled using the conventional

expression

where the mean viscous dissipation g is obtained from a standard balance equation
and v is the viscosity in the reactants. Libraries have been assembled for methane

and propane over a range of conditions and model calculations have been carried
out. Preliminary comparison with experiment is encouraging (Bray, 1990).

Areas in which Direct Simulation results are likely to prove particularly valuable

are in the characterization of the strain on the flame surface both for modeling

of _ and for controlling the parameterization of the flamelet libraries. Similarly,

information on the curvature of the flame surface is required to assist in the modeling
of area creation and destruction by propagation, and to assess the extent to which

pure curvature effects contribute to the laminar flame response.

3. Datasets and Postprocessing

Data available at CTR includes several large sets of results obtained from direct

simulation of the propagation of a premixed flame in isotropic turbulence (Rutland,

1989). The simulations were carried out in three dimensions on a 128 s grid using

a pseudo-spectral method with periodic boundary conditions. Two flames were
started back-to-back near a central plane of the grid and were allowed to propagate

outwards. One-step Arrhenius kinetics were employed and near-zero heat release

was assumed. The turbulence was allowed to decay naturally and the simulation
was terminated when either the flames had reached the edge of the domain or the

turbulence integral length scale had grown too large. Considerable distortion of
the initially planar flames was observed, and the turbulent flame speed was found

to rise rapidly to a maximum value before decaying in time with the background

turbulence.
The datasets were made available together with a skeleton postprocessing pro-

gram written in the local language Vectoral. Further postprocessing software was
written in both Vectoral and Fortran and a powerful tool was developed for the

extraction of relevant statistical data.
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4. Results and discussion

Results were extracted from individual data.sets chosen from four separate runs
of the pseudo-spectral code denoted by Rutland (1989) as Cases 1 to 4 in order

of rising initial u'. In all of these the domain Reynolds number was set to 30,
the unperturbed laminar flame speed was 0.39 and the unperturbed laminar flame
thickness was 0.45. The list of cases considered is:

Case 1, set g: Rex =

Case 2, set g: Rex =
Case 2, set h Rex =

Case 3, set m: Rex :

Case 3, set p: Rex =

Case 4, set p: Rex =

1.9, Ka = 0.18, u'/S_ = 0.26

5.2, Ka = 0.64, u'/S_ : 0.79

4.2, Ka = 0.24, u'/S_ ---- 0.43

7.2, Ka = 0.73, u'/S_ = 0.97

6.4, Ka = 0.41, u'/S_ = 0.72
8.6, Ka = 0.75, ul/S_ = 1.10

Visualization of the flame surfaces in three dimensions revealed the extent of
the wrinkling. The periodic boundary conditions ensured that the surfaces of mean

progress variable were planes oriented perpendicular to the direction of propagation
and the locations zmCa_,(_ = _*) of these planes were found for _* -- 0.1, 0.3, 0.5,
0.7 and 0.9 during the first pass through the data. A second pass was then made

to localize points on the instantaneous flame surface z°(c = c') for the same values

of instantaneous progress variable. This produced a list of points on the surface

spaced regularly in the plane perpendicular to the direction of mean propagation
and randomly in the propagation direction. Quantities of interest were interpolated
onto the flame surface points using cubic splines, and statistics were obtained on

the surface with a sample size of at least 1282 points.

4.1 Square Waves

The intersection of each mean plane with the instantaneous flame surface (defined
by the location of the maximum laminar reaction rate) produced a two-dimensional

square wave of progress variable 1282 points in extent. Each line in the mean

plane produced a one-dimensional square wave, all such lines being equivalent due

to isotropy. Unfortunately the number of flame crossings in each mean plane was

severely limited in all Cases (max. 8 per line, mean about 2) and it was not possible

to obtain a reliable estimate of L_ by autocorrelation. A similar restriction applies
to the collection of statistics of burned (or unburned) packet sizes. Insufficient

numbers of such packets precluded the formation of a pdf of packet length and

hence the estimation of g, but statistics of the crossing direction _y were obtained,

indicating values of _ ranging from 0.37 for Case 4, set p to 0.87 for Case 1, set

g, but with only weak dependence on mean progress variable. This is in agreement

with the weakly-turbulent Bunsen flame data of Chew (1989) who obtained _ :0.5
independent of progress variable. The inability to collect large-scale statistics is a
reflection of the poor large-scale sampling inherent in the Direct Simulations and

does not represent a serious limitation since these statistics are among the most

easily obtained from experiment. In contrast the three-dimensional direction _ is
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extremely difficult to obtain experimentally and is found quite naturally here.

_.?. Strain rate

The rate-of-strain tensor sij on the flame surface was evaluated from velocity

derivatives taken in spectral space, and the tangential strain rate aT in the flame

surface was obtained by rotating the tensor to align the 3-direction with the flame

normal. A pdf of tangential strain is shown in Figure 1 for Case 3, set p. The strain

axis is normalized by the Kolmogorov time-scale and the pdf reveals that the mean

strain is positive, having a value of about 0.28/r_ independent of progress variable.
There is also very significant probability of negative straining (compression) of the

flame. Variation of the normalized pdf with Reynolds number is slight.
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FIGURE 1. Pdf of tangential strain rate aT. Case 3, set p.

These results agree well with those of Pope (1990) and are of fundamental im-

portance in modeling.

•_.3 Curvature

Flame surface curvature was calculated by forming the tensor of the derivatives

of the normal to the surface Nid and rotating it to align the 3-direction with the

normal. Solution of the eigenvalue problem in the plane then yields the two principal

curvatures hi and h2. Positive curvature here is in the sense of convex towards
the reactants. The mean curvature h is plotted in Figure 2 for Case 2, set 1 and

shows a slight skewness towards positive curvature although the mean is zero. This

may be interpreted as a propagation effect, with positively-curved wrinkles growing

while negatively-curved wrinkles shrink to the minimum allowed by diffusion. The
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curvatures corresponding to the inverse flame thickness 1/_L and to the inverse
Kolmogorov scale 1/7 are indicated.

There appears to be some systematic variation with progress variable leading to
narrower pdf's near the front of the flame. Again, there is little variation between
cases of different Reynolds number.

A slightly different perspective is given by Figure 3 which shows the curvature

shape factor defines as _h = ht/h_, where hi is the smaller of the two principal

curvatures by magnitude and h= is the other. Then sh = 1 denotes spherical

curvature, 8h = 0 denotes cylindrical curvature and sh = -1 denotes spherical
saddle points. Evidently cylindrical curvature predominates and this is true for all

Cases considered, as well as for material surfaces at much higher Reynolds number

(Pope, 1989). Spherical curvature simply does not occur, while spherical saddle

points occur only with relatively small probability. The implication for modeling
is that only single (or mean) curvature needs to be considered in the treatment of
laminar flamelets.

_t.4 Interaction between _train and curvature

Strain and curvature do not occur in isolation and their interaction is illustrated

in Figure 4 as contours of their joint pdf taken from Case 3, set p for progress
variable 0.5.

Maximum strain is found where the curvature is zero, while maximum positive
and negative curvature occurs near where the strain is zero. Strain and curvature

occur together only at moderate values of both. Further illustration is provided by
Figure 5 which shows the cosine of the angle Ooh between the direction of maximum



StatiJticJ for laminar flamelet modeling 277

1.50 . i • ! " ! " i . i • i - i •

1.25

>-,
1ow,q

¢)
"0

1_, o.75

0.25

0

FIGURE 3.

LEGEND

¢ -- 0.1

f_ ; c=0.3

_ '_oT

_ ,_ ...._._...o_+....

I"

i I i I i I i i

-0.75 -0.50 -0.25 0 0.25 0.50 0.75

Curvature shape factor sh

Pdf of curvature shape factor s_. Case 4, set p.

10

FIGURE 4.

set p.

7.5

5

2.5

0

-2.5

-5

-7,5

-10

-1.5

I
t I I I t

-1 -0.5 0 0.5 1 1.5

Tangential strain rate aT

Joint pdf of mean curvature h and tangential strain rate aT. Case 3,



278 R. S. Cant _ C. ,L Rutland _ A. Trouv_

strain in the tangent plane of the flame and the direction associated with minimum

curvature. There is a high probability of alignment which appears to indicate that

the cylindrically curved portions of the flame are being pulled out by strain. This

observation would also support the idea that spherically curved pieces of the surface
are immediately strained into a more cylindrical shape, while spherical saddles result

from changes in the direction of straining on an already cylindrical surface. In

general curvature appears to be associated with strain history (see, for example,
Pope, 1988).

4
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FIGURE 5. Pdf of cosine of the angle Oohbetween the direction of maximum strain

in the surface and the direction of minimum curvature. Case 1, set g.

_.5 Other results

Several other quantities were evaluated during the collection of the principal
results given above. The pdf of the velocity u' on the surface was assembled and

agrees well with the volume-averaged statistics, yielding zero mean, variance of u '2
and isotropy. The pdf of the flame normal yields a mean of zero in the transverse

directions, about 0.92 for Case 1, set g and about 0.37 for Case 4, set p in the

direction of propagation independent of progress variable. The principal strain

rates on the surface yield magnitudes in the familiar ratio 3:1:-4 in the mean, while
the flame normal demonstrates strong preference for alignment with the direction

of maximum compressive strain (Rutland, 1989).

5. Conclusions

Statistics of interest in the modeling of turbulent premixed combustion by a
laminar flamelet approach have been gathered from a database of the results of
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Direct Numerical Simulation of turbulent flames. A reasonable range of Taylor-

scale Reynolds number, Karlovitz number and u'/SL has been covered. Statistical

results, mainly in the form of pdf's, have been obtained for strain, curvature and

associated quantities and show features which have been observed previously only

for material surfaces at considerably higher Reynolds numbers. A great deal of

insight has been gained into the processes governing the propagation of turbulent
flames and sound foundations have been laid for future modeling activity.
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The Influence of Lewis number
and nonhomogeneous mixture on

premixed turbulent flame structure

By D. C. Haworth I AND T. J. Poinsot 2

The structure of a premixed flame front in two-dimensional turbulence is inves-

tigated using full numerical simulation including heat release, variable fluid prop-

erties, and one--step Arrhenius chemistry. Non-unity Lewis nuttnber (Le) effects

are described by comparing the local instantaneous turbulent flame structure to

the steady one-dimensional laminar flame structure for the same thermochemical

parameters. Flame surface area, mean reactant consumption rate per unit area of

flame (mean "flamelet speed"), turbulent flame speed, and statistical descriptions

of the flame geometry (pdf's of curvature and strain) also are reported. Principal

findings are that the local flame structure correlates strongly with the local flame

curvature, while global properties (e.g., turbulent flame speed) depend both on

strain and on curvature.

Preliminary results for cases with nonhomogeneous reactant mixture strength

axe reported. Here the emphasis is on the ability of a propagating flame to recover
after encountering a fuel-lean pocket in an otherwise homogeneous mixture. Both

one-dimensional and two-dimensional cases are described.

1. Introduction

The structure of premixed flames in turbulent flows is an important fundamental

and practical question in turbulent combustion. In applications such as recipro-

cating internal combustion engines, accurate modeling of turbulent premixed com-

bustion is an essential step in formulating truly predictive multidimensional models

that can be used to study in-cylinder processes and optimize engine designs.

Because flame structure information is difficult to obtain experimentally, numer-

ical simulations have become an important tool in complementing experimental

investigations of turbulent combustion. For the foreseeable future, numerical sim-
ulation of the full three-dimensional governing partial differential equations with

variable density and transport properties and complex chemistry will remain in-

tractable; thus various levels of simplification will remain necessary. On one hand,

the requirement to simplify is not necessarily a handicap: numerical simulations al-

low the researcher a degree of control in isolating specific physical phenomena that

is inaccessible in experiments. For example, one can "turn off" heat release to study

1 General Motors Research Laboratories, Warren, MI

2 Center for Turbulence Research, find C. N. R. S., Ecole Centrale de Paris
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the influence of turbulence on chemical reaction without the confounding effects of

chemistry on the flow field through density and fluid property variations. On the

other hand, the highly coupled nonlinear nature of the governing partial differential

equations demands that one remains wary when extrapolating results obtained in

such idealized modeled systems to practical turbulent premixed flames. A judicious
balance of experiment and computation remains the most fruitful approach.

In the present study, the modeled system includes heat release, variable fluid
properties, and simple chemistry in two-dimensional turbulence. While it is rec-

ognized that two-dimensional turbulence differs from three-dimensional turbulence

(e.g., Herring et al., 1974; Lesieur, 1987), it is our feeling that the response of

the physical flame structure to straining and curvature should be generic, even if

detailed statistical correlations (especially of small-scale quantities) differ quanti-

tatively from what would be found in three dimensions. Restricting the simulations
to two dimensions also permits a wider dynamic range of scales to be computed, so
that, for example, higher turbulence Reynolds numbers can be simulated while still

resolving the flame structure. In any case, the present results can be compared with

three-dimensional constant-density computations (e.g., Pope et al., 1989; Rutland,
1989; Yeung et aL, 1990; Cant et al., 1990; Rutland & Trouv_, 1990) to better
understand the limitations and similarities of the two approaches.

If chemical times are short enough compared to turbulence times, the flame zone

is "thin" and may be treated, in the limit, as an interface separating fresh unburnt

reactants from hot burnt products. This mode of combustion is called the flamelet
regime. It has been invoked widely as a framework for the construction of turbulent

combustion models (e.g., Bray & Libby, 1986; Candel et al., 1988; Pope & Cheng,
1988; Cant & Bray, 1988; E1 Tahry, 1990). Of primary importance for flamelet
models are two quantities: 1) the total flame surface (the area of the interface be-

tween fresh and burnt gases); and, 2) the local structure of the individual flamelets.

Although these flame elements are thin, their internal structure may be influenced

by the flow characteristics and may have an influence on the global consumption
rate of reactants.

The objective of this work is to investigate the dependence of these two quantities

on the Lewis number Le (ratio of thermal to species diffusivities) and on the spatial
distribution of reactant mass fraction. The Lewis number has been identified in

asymptotic analyses of laminar flames as an important parameter influencing pre-

mixed flame structure and stability; we wish to assess its importance in determining
the local and global structure of turbulent flames. Nonhomogeneous combustion is

an important mode of burning in practical devices including direct-injection or

stratified-charge internal combustion engines. There is, however, relatively little
analysis or experimental results to guide the modeling of this mode of combustion

with turbulence. Most of the discussion will focus on Lewis number effects; only
preliminary results for nonhomogeneous cases will be given.
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2. Numerical method

We consider a compressible viscous reacting flow. The chemical reaction is rep-

resented by a single-step mechanism,

R (reactants) ---_P (products), (1)

and the reaction rate d_R is expressed as,

lbR=BpYR exp (- _---a) •
(2)

This can be interpreted as a binary reaction where one of the reactants (YR) is

always deficient. It is convenient to follow Williams (1985) and cast this expression

in the form,

(oR BpYR exp ( -/_(1 - O)= (3)

Here O is the reduced temperature, 0 = (T - 7"1)/(2"2 - TI), where Tz is the fresh

gas temperature and T2 is the adiabatic flame temperature for unity Lewis number.
The activation energy is T,,, and the coefficients B, a, and fl are, respectively, the

reduced pre--exponential factor, the temperature factor and the reduced activation

energy,

B = Bexp(-j3/a), a = (T2 - Tz)/T2, and j3 = aT,,/T2. (4)

The mass fraction of the reactants YR may be conveniently nondimensionalized bJ(

the initial mass fraction of reactants Y_ in the fresh gases, Y = YR/Y_, so that Y
varies from 1 in the fresh gases to 0 in the burnt gases. Fluid properties follow the

equations of state,
p = pl(pTz/plT), i.t = #z(T/T1) b ,

Le = _/pDep : constant, Pr = pcp/)t : constant, (5)

where p, A, and D are molecular diffusivities of momentum, internal energy, and

species, respectively. Here a subscript 1 refers to reference properties in the fresh

gases. Heat losses can be included in the energy equation: a dimensionless heat loss
coefficient c expresses the magnitude of the heat loss (Poinsot et al., 1990). For the

homogeneous runs, c = 0 (adiabatic).

Using these assumptions and a Cartesian frame of reference, the conservation

equations for compressible flows are solved using a high-order finite difference
scheme. The numerical accuracy is sixth-order in space and third-order in time

(Lele, 1990). Spatial derivatives are computed using a compact scheme and the time
advancement is produced by a minimal-storage third-order Runge-Kutta method

(Wray, 1990). Boundary conditions are specified using the NSCBC method (Poinsot



284 D. C. Haworth 0 T. J. Poinsot

Inlet

\

ee qd ¢ Oeundqr 

Laminar flame front

Fresh gases
+ random 2D
turbulence

Periodic boundary

utlet
Burnt

gases

FIGURE i. Schematic of two--dimensional computational configuration.

& Lele, 1990). Details concerning the system of equations solved and the numerical

methods can be found in these papers. Typical grids contain 160000 points.

A schematic of the computational configuration is given in Figure 1. The cal-

culations are initialized with reactants on one side of the computational domain
and products on the other; these are separated by a laminar premixed flame. The

initial velocity field (turbulence spectrum) and spatial distribution of reactant mass
fraction is specified at t = 0: the system is then allowed to evolve in time. The ini-

tially planar flame is convected and strained by the turbulence while the combustion

influences the fluid mechanics through dilatation and temperature-dependent prop-

erties (Eq. 5). Typical contours of temperature, reactant mass fraction, reaction
rate, and vorticity are shown in Figure 2 for a homogeneous reactant, Le = 1.2 case.

There it can be seen that the initially planar flame has been strongly distorted and
stretched by the turbulence. There is very little vorticity behind the flame in the

hot products: the high viscosity there (Eq. 5) suppresses most turbulent velocity
fluctuations.

Relevant dimensionless parameters in the homogeneous reactant simulations are:

- ratio of rrus turbulence intensity u' to the undisturbed laminar flame speed s_;
- ratio of turbulence integral length scale l to laminar flame thickness $tl, where
6tl = (T2 - T1 )/(dY/dz),,_=;

- turbulence Reynolds number Ret = u'l/u;

- ratio of turbulence time scale _"= l/u' to flame time scale r! = 6tl/S_;

- strain Karlovitz number Kaot = (s_) • 7/, where (st) is the area-averaged mean
strain rate tangent to the flame;

- ratio of turbulence micro--length-scale 1,1to laminar flame thickness 611; and,

- ratio of turbulence micro-time-scale % to flame time scale -rI.

The values of these parameters as functions of time for three cases are given in

Table I (r0 is the initial value of the turbulence time scale r). Table II contains

the fixed parameters for the homogeneous reactants cases. Initial turbulence spec-
ification is (statistically) the same for all three cases in Table I; runs made with
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FIGURE 2. Contours at dimensionless time t/_'o = 1.8 for Le = 1.2 with homo-

geneous reactants: a) temperature; b) reactant mass fraction; c) reaction rate; and

d) vorticity.

different initial spectra have been made, but are not reported here.

The microscales l_ and r_ are based on the dissipation rate of enstrophy; presum-

ably, this is the most appropriate definition of the scales of the smallest motions in

two-dimensional turbulence (Herring et al., 1974; Lesieur, 1987). The enstrophy f_

(mean-square vorticity) and its dissipation rate 17are given by,

n = .5 Iv × _1', (6)

,7= ,,IV x (v x ,,)p, (7)
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where the overbar denotes a spatial average. The ratios of the enstrophy-based

microscales 1,1 = (v3/rl)l/e, r,, = ,1-1/s, to the more conventional Kolmogorov

microscales appropriate for three-dimensional turbulence (lk = (v3/e) 1/4, T_ =
(v/e) '/2, where _ is the dissipation rate of turbulence kinetic energy) are also given

in Table I. There it can be seen that the length microscales differ by 50%-60%,
while the time microscales differ by up to nearly a factor of three. It should be

noted that all turbulence scales (u', l, % 1,, I"_, lk, and ,'_) are volume-averaged
mean quantities conditional on being in the fresh gases in front of the flame.

Table I. Dimensionless parameters for three homogeneous mixture cases.

First row for each Lewis number is the initial condition (t = 0),
second row is at normalized time t/','o _ 1.8.

tl -o tl ,i "l"s so<,,, ",,l"s l,,Ith

0.8 0.00 6.44 2.57 81 0.40 0.00 0.19 0.18 1.63 2.43

1.83 4.82 5.29 126 1.10 1.47 0.24 0.28 1.49 2.23

1.0 0.00 6.11 2.68 81 0.44 0.00 0.20 0.20 1.64 2.69

1.85 4.68 5.80 132 1.24 1.25 0.25 0.30 1.48 2.20

1.2 0.00 5.69 2.91 77 0.52 0.00 0.22 0.23 1.64 2.68

1.84 4.32 6.46 124 1.50 1.09 0.27 0.37 1.48 2.34

Table II. Fixed parameters for homogeneous reactant cases.

a _ A b Pr c

0.75 8.00 146. 0.76 0.75 0.00

3. Diagnostics

For homogeneous cases, postprocessing of the two-dimensional computed fields
(snapshots at fixed times) begins by defining a flame front as an isocontour of either

temperature T or of reactant mass fraction YR. The choice of dependent variable
and the value of isocontour selected to identify the flame have been seen to have

little influence on the results. Unless otherwise specified, the YR = 0.3 isocontour

has been used to define the flame in the results that follow; this contour lies slightly
in front of the reaction zone towards the fresh gases.



Lewis number and nonhomogeneous mizture 287

Once the flame front has been located, the local normal and local flame curvature

are readily computed: curvatures concave towards the hot products axe assigned

positive values. One--dimensional cuts normal to the flame are taken; it is these

profiles that define the local "structure" of the turbulent flame. We compare the
local turbulent flame profiles with the steady one-dimensional laminar flame profile

for the same chemistry and fluid properties. Of particular interest is the distribution

along the flame of the normalized local flame speed ("flamelet speed") s,_ defined

by,

_- / C8)

that is, the integral of the reaction rate profile in a direction locally normal to
the isocontour defining the turbulent flame, normalized by the undisturbed laminar

flame speed. If the local turbulent reaction rate profile is identical to that of an
undisturbed laminar flame, then sn --- 1. The isocontour curvature and the compo-

nents of the strain rate normal to (Vn" v_) and tangent to (Vt. v_) the flame contour

are also computed along the flame front. Area-weighted (arclength-weighted in

two dimensions) statistics of s_, curvature, and components of the strain rate are
calculated. The mean consumption rate of reactants per unit area of flame surface

("mean flamelet speed"), normalized by the laminar flame value, is computed as,

(s,_) = / s,_ dA / / dA. (9)

For nonhomogeneous reactant cases, appropriate diagnostics are stiU being de-

veloped.

4. Non-unity Lewis number effects in turbulent premixed flames

Results for Le = 0.8, 1.0, and 1.2 are reported (see Table I). We begin in Section

4.1 with a brief review of analytic and earlier computational results for nonunity

Lewis numbers in premixed flames. Next, we describe the local flame structures
found in the present simulations. In Section 4.3, global quantities of interest are dis-

cussed. And finally, in Section 4.4, statistics of flame front curvature and strain rate

are given; these are compared with results obtained in three-dimensional uniform-

property simulations.

4.1. Review of Lewis number influence in premized flames

Textbook discussions of thermodiffusive effects for premixed flames with nonunity

Lewis numbers reveal the following behavior (e.g., Williams, 1985). For Le = 1 (and

subject to other assumptions consistent with those made here in Section 2), only

one of YR or T is independent (Y + 0 = 1 everywhere), and the reaction rate is a

unique function of the reactant mass fraction or temperature. Flame curvature is

not expected to influence the local flame structure. Straining can thin the flame

(for positive, or extensive, straining in the tangent plane) or thicken the flame

(for negative, or compressive, straining in the tangent plane), but the maximum
reaction rate remains unaffected. Thus the local flamelet speed (Eq. 8) is expected
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to (slightly) decrease/increase for a flame element subjected to positive/negative
tangential strain.

For Lewis numbers other than unity, differential diffusion between heat and

species leads to richer possibilities in flame structure. In particular, flame front
curvature influences the local burning rate. For Le > 1, elements of flame surface

that are concave towards the reactants are expected to burn faster, while elements

that are concave towards the products are expected to have a lower burning rate
compared to that of a planar flame. Positive (extensive) tangential strain will de-
crease the flamelet speed relative to that of an undisturbed laminar flame for Le > 1.

On the other hand, Lewis numbers less than unity are expected to display the op-

posite behavior: lower burning rate for elements concave towards reactants; higher

burning rates for elements concave towards products; and, increasing flamelet speed
with extensive strain.

Ashurst et al. (1987) reported two-dimensional numerical simulations of pre-
mixed flames with nonunity Lewis numbers in the limit of zero heat release. The

thermodiffusive effects described above for nonunity Lewis number were observed in

their simulations. Results were expressed in terms of the excess enthalpy relative to

an undisturbed laminar flame; a correlation between strain rate and excess enthalpy

was reported. Here, we calculate cases with higher turbulence intensity (Table I),
variable properties, and heat release. The local flame structure is found to correlate

more strongly with the local flame curvature than with strain rate, while global
flame behavior depends on both strain and curvature.

_._. Simulation results: local flame _tructure

The local flame structure, as illustrated through one-dimensional cuts of reaction

rate, is shown in Figure 3 for each of the three Lewis numbers simulated. There, it is
clear that the local flame structure is everywhere nearly identical to that of an undis-

turbed laminar flame for Le = 1 (Figure 3b), while for nonunity Lewis numbers,
there is no collapse of the local turbulent flame profiles onto the one-dimensional

undisturbed larninar flame profile (Figures 3a and 3c). From the discussion given

in Section 4.1 above and the sample reaction rate contours shown in Figure 2, we
expect to see a correlation between local flame curvature and the local flamelet

speed; indeed, this is the case. Figures 4a, 4b, and 4c illustrate this correlation

for each of the three Lewis numbers computed. For Le = 0.8 (Figure 4a), flame

elements concave towards reactants tend to have lower local flamelet speeds, and

conversely for dements concave towards products; for Le = 1.0 (Figure 4b), there

is no apparent correlation between local curvature and local flame structure; and,

for Le = 1.2 (Figure 4c), the correlation is opposite to that shown in Figure 4a.
If instead, we attempt to correlate the local flamelet speed in the turbulent flame

with the strain rate tangent to the flame, then the scatter plots of Figure 5 result.

There is no apparent systematic correlation evident for the nonunity Lewis number

cases. For Le = 1, a small negative slope can be seen. This presumably is a reflec-

tion of flame thickening/thinning resulting from compressive/extensive tangential

straining. The strain Karlovitz number Kaot at this time is greater than unity
(Table I) so that it is reasonable to expect that turbulent straining could affect the
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FIGURE 3. Local reaction rate profiles normal to the turbulent flame (lines) and

laminar reaction rate profile (symbols) for three Lewis numbers at normalized time

t/_o = 1.8: a) Le --- 0.8; b) Le --- 1.0; c) Le = 1.2.

local flame structure.

4.3. Simulation results: global quantitiea

The mean reaction rate along the turbulent flame (mean flamelet speed) and

the flame surface area axe quantities of interest in constructing flamelet models for

turbulent premixed combustion. In Figure 6, probability density functions (pdf's)

of the normalized local flamelet speed in the turbulent flame are shown for each of

the three Lewis numbers at time t/ro = 1.8. For nonunity Lewis numbers, it can be

seen that the pdf of flamelet speed is broadened and shifted relative to Le = 1.0.

The unity Lewis number case shows a small spread about the undisturbed laminar

flame speed, presumably reflecting the influence of tangential strain. The area-

averaged mean flamelet speeds, referred to that of an undisturbed laminar flame at

the same Lewis number, are 1.14 (Le = 0.8); 1.00 (Le = 1.0); and, 0.86 (Le = 1.2).

Figure 7 illustrates the Lewis number effects in a different way. There, the vari-
ation with time of the turbulent flame speed (computed from the volume-averaged

mean reaction rate over the entire two-dimensional computational domain), normal-

ized by the laminar flame speed, is shown for each of the three cases. Superimposed

on this is the flame area (or length, in two dimensions), normalized by the initially

planar flame length. The turbulent flame speed is (normalizations aside) the prod-
uct of the mean flamelet speed and the flame area. The interesting finding is that



290 D. C. Haworth _ T. J. Poinaot

e_

-a.i -:'.|

a)

-z.s -iJ -Ls -Lo -_.s 0'.o 0*.s :*. (.s

curvature × lain flame thic[ness
C)

****%__ °°_- _ a a °o

alDOd_o _ a_

a'.O

-,'.s -,*.a -_.s _.o o'.J G.a k'.s Lo m.s

L,

II

no o

o

m qh oa

.Ls -a'.| -t'.s -i'.o -_,s o'.i) o'.s I',O ,.S

cu:vature x ]am flame thickness

o

o

curvature x lain flame thickness

FIGURE 4. Scatter plots of normalized local flamelet speed in the turbulent flame

(Eq. 8) versus local flame curvature (normalized by the laminar flame thickness 5n)

for three Lewis numbers at normalized time t/_'o = 1.8: a) Le = 0.8; b) Le = 1.0;
c) Le = 1.2. Profiles are for various y locations.

the turbulent flame speed increases more rapidly than the flame area for Le = 0.8;

that for Le = 1.0, these two quantities evolve identically; and, that for Le = 1.2, the

flame surface increase exceeds the turbulent flame speed augmentation. Figure 7d

repeats the turbulent flame speed curves for the three Lewis numbers to emphasize

the decrease in turbulent flame speed with increasing Lewis number.

Comparison of Figures 7a-7c reveals that, for Le = 0.8, the turbulence creates

more flame surface than for Le -- 1.0. This results from the interaction between

flame curvature and thermodiffusive effects for no°unity Lewis numbers. Thus

the higher turbulent flame speed relative to flame area for Le = 0.8 can be seen

to result from two complementary effects: more flame surface, plus higher mean

flamelet speed (Figure 6). Similarly, for Lc = 1.2, the lower turbulent flame speed

is a consequence of less flame area being generated, coupled with a lower mean
flamelet speed.

_._. Simulation re_ulta: flame curvature and attain rate

Typical pdf's of flame curvature (normalized by the laminar flame thickness/fz])

are shown in Figure 8. It may be seen that the pdf is nearly symmetric, with a

mean value near zero, and with few curvatures exceeding one over the laminar flame

thickness. The smallest radii of curvature are equal to about one-half of _z_. The
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FIGURE 5. Scatter plots of normalized local flamelet speed in the turbulent flame

(Eq. 8) versus local flame tangential strain rate (normalized by the laminar flame

timescale _y = 6z]/s_) for three Lewis numbers at normalized time t/_'o = 1.8: a)

Le = 0.8; b) Le = 1.0; c) Le = 1.2.

neax symmetry of the pdf suggests that the differences in mean flamelet speed with

Lewis number seen in Figure 6 are primarily attributable to strain.

For simulations with heat release and vaxiable properties, it is important to dis-

tinguish between the normal and tangential components of the strain rate on the
flame. Here the normal component is dominated by the velocity divergence through

the flame resulting from the change in fluid density. Pdf's of tangential strain rate

are given in Figure 9. There it can be seen that extensive strain rates are dominant

- that is, the flame aligns preferentially with extensive strains; there is no appar-

ent systematic dependence on Le. This is again consistent with the notion that

the differences in normalized mean flamelet speeds for the three Lewis numbers is

principally a strain effect. The dominance of extensive strain rates is also seen in
three-dimensional simulations (Yeung et al., 1990 - for material surfaces; Rutland,

1989; Cant et al., 1990; Rutland _ Trouv_, 1990). The mean tangential strain

rate in Figure 9 has been scaled with the flame time l"y to emphasize interactions

between chemistry and turbulence. If, instead, we scale the mean tangential strain

rate with the enstrophy micro--time--scale _, as,

(V, . __) = C,l_,, (10)

then it is found that the value of C, varies from a zero value at the beginning of
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FIGURE 8. Normalized pdf's of fla_ne curvature for three Lewis numbers at

normalized time t/l"0 = 1.8.

the computations (no preferential alignment of the initial]y planar flame with the

fluid strain rate) to a more or less steady value of 0.40 - 0.50. We can also scale

the mean tangential strain rate with the Kolmogorov time scale _'_,

(V,-2) = C'_,/"rk = C_(_/_') '/2. (11)

In this case, values of Ok range from 0.15 to 0.20 once the flame has become suf-

ficiently wrinkled (t/ro >_ 1). In three-dimensional simulations, C_ is found to

be 0.25 - 0.28 (Yeung et al., 1990 - for material surfaces; Cant et al., 1990). It

should be emphasized that _ is probably not a physically meaningful scale for two-

dimensional turbulence; it is shown here only for comparison with three-dimensional

results.

5. Nonhomogeneous reactants

As a first step towards understanding and modeling the behavior of turbulent

flames in nonuniform mixtures, we have modeled the case of a laminar flame prop-

agating through a "hole" or pocket of lean (YR = 0) reactants in an otherwise

homogeneous (YR = 1) mixture. We first briefly review related previous work con-

ceruing nonhomogeneous combustion, then show preliminary results for the cases

that we have calculated.

5.1. Background

Several configurations of laminar combustion in nonhomogeneous mixtures have

been investigated analytically using high-energy asymptotics. These include cases

of one-dimensional laminar flames propagating into gradients in reactant mass frac-

tion normal to the flame (e.g., Bissett & P, euss, 1986; Mikolaitis, 1984), and cases
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where there is a gradient in reactant concentration parallel to the premixed flame

front (Buckmaster & Matalon, 1988). In these analyses, it is principally the mass

consumption rate of the transient flame compared to that of an undisturbed steady
laminar flame at the same local mixture strength that is of interest.

Nonhomogeneous mixtures also have been incorporated into models for turbu-

lent combustion by Veynante et al. (1989) within the framework of the modified

coherent flame model of Marble and Broadwell (1977). This model uses two mod-

eled equations for flame surface--to-volume ratio, one for premixed burning and the
other for post-flame diffusion burning.

Here, nonhomogeneous combustion is addressed in two simple configurations.

The single-step Arrhenius chemistry of Eqs. (1)-(4) is retained, but heat losses are

allowed (c) 0) so that extinction effects can be modeled. The Lewis number is

unity, and all chemistry parameters are as in Table II. Since we monitor a single
reactant mass fraction, we are restricting our attention to cases where one of the

reactants is always deficient (i.e., the mixture is everywhere rich or lean). This
precludes some interesting behavior that can be expected when equivalence ratios

on both sides of stoichiometric are present (Buckmaster & Matalon, 1988). A

planar laminar flame propagating in a homogeneous mixture (Y/_ = 1) encounters

a pocket of zero fuel mass fraction (YR -- 0). As a first step, we seek to quantify

the parameters that govern whether the flame will reignite or extinguish following

its encounter with the hole. The governing parameter is expected to be a ratio of

a length scale characteristic of the post-flame temperature gradient resulting from
the heat loss to a characteristic hole size.

5._. One-dimensional laminar calculation8

Typical initial profiles of reactant mass fraction and temperature are shown in
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Figure 10. As the flame propagates, the reaction rate drops as the flame encounters
the hole. The haLf-width of the hole, R, is taken as a characteristic dimension of

the disturbance.

Figure 11 shows the transient behavior of the flame (normalized total reaction
rate versus time) as it passes through the hole as a function of R for two values of
the heat loss coefficient c. There is a critical value of R, Rcrlt = Ro.it(c), such that

for R > Refit, the flame extinguishes and for R < Rcrit, the flame reignites. For

c = 5.10 -5, Figure 11 shows that Rc,-it _ 0.05; and, for c = 1.10 -4, R_it _ 0.014.
In the limit of zero heat loss (c = 0), the flame will always reignite.

5._, Two-dimensional laminar calculation8

Similar calculations have been repeated in two spatial dimensions for a round

hole of lean (Y_t = 0) reactants embedded in a YR = 1 mixture. Compared to the
one-dimensional case, the flame now can travel around the hole to reignite on the

other side. An example of a case where the flame failed to reignite after passing the

hole is shown in Figure 12.
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FIGURE 12. Contours of temperature for a two-dimensional laminar calculation

with a lean hole in the reactants. The flame has failed to reignite after passing

through the hole.

6. Summary and conclusions

Calculations of premixed turbulent flame structure in two-dimensional turbulence

have been reported. Quantitative results have been presented illustrating the effect

of Lewis number on the local and global flame structure. Pdf's of flame strain rate

and curvature have also been shown. Conclusions are that: 1) the local flamelet

speed in the Le - 1 flame is everywhere nearly identical to that of an undisturbed

laminar flame; 2) for Le _ 1, the local flamelet speed differs from that of the

undisturbed laminar flame and correlates strongly with local flame curvature; 3)

flame strain results in a mean flamelet speed that is higher than the laminar value

for Le <_ 1, is identical to the laminar value for Le -_ 1, and is lower than the laminar

value for Le _> 1; 4) straining and curvature effects result in more flame surface for

Le <_ 1 than for Le _ 1 - this, combined with the dependence of mean flamelet speed

on Le, results in a strong dependence of turbulent flame speed on Le; 5) pdf's of

flame curvature are nearly symmetric with a near-zero mean value - the maximum

curvatures found are of the order of one over the laminar flame thickness; and, 6)

pdf's of strain rate tangent to the flame are skewed towards positive (extensive)
strains with a mean strain rate of the order of the inverse of the time scale of the

smallest turbulent motions. These results imply that, for the range of parameters

investigated, curvature is more important than strain rate in determining the local

flame structure. Turbulent flame speed, however, is influenced both by curvature

(through the flame surface area) and by strain (through the flame surface area and

mean flamelet speed), and is strongly Lewis number dependent.

These results may have implications for the implementation of flamelet models

of turbulent premixed combustion. The prototype laminar configuration for which
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flamelet libraries have been generated is generally that of a one--dimensional laminar

stagnation-point burner. This configuration accounts, in some sense, for the effect

of tangential strain, but does not account for flame front curvature. A second im-

portant result for modeling is that the flame surface area, the mean flamelet speed,

and the turbulent flame speed all are functions of Lewis number: this dependence

has been neglected in most models.

Questions remaining to be addressed include: further comparisons between two--
dimensional and three-dimensional calculations to quantify the limitations and

virtues of each; relative contributions of straining versus curvature to the total flame

stretch; and, quantitative correlations between global quantities such as turbulent

flame speed, turbulent rms velocity, and Lewis number.
For nonhomogeneous mixture cases, the bulk of the data reduction remains to

be done. Here, we need to: quantify the recovery limits for flames propagating

through lean holes, add at least one additional species so that both fuel-rich and

fuel-lean regions can be modeled, include turbulence in the calculations, and try

more complex (random) initial spatial distributions of the reactants.
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Pre-mixed flame simulations
for non-unity Lewis numbers ii

By C. J. Rutland I AND A. Trouve 2

A principal effect of turbulence on premixed flames in the flamelet regime is to
wrinkle the flame fronts. For non-unlty Lewis numbers, the local flame structure is

altered in curved regions. This effect is examined using direct numerical simulations

of three dimensional, constant density, decaying isotropic turbulence with a single

step, finite rate chemical reaction. Simulations of Lewis numbers 0.8, 1.0 and 1.2

are compared. The turbulent flame speed, ST , increases as Le decreases. The

correlation between ST and u _ found in previous Le = 1 simulations has a strong

Lewis number dependency. The variance of the pdf of the flame curvature increases

as Le decreases, indicating the flames become more wrinkled. A strong correlation

between local flame speed and curvature was found. For Le _ 1, the flame speed

increases in regions concave towards the products and decreases in convex regions.

The opposite correlation was found for Le < 1. The mean temperature of the

products was also found to vary with Lewis number. For Le = 0.8, it is less than

the adiabatic flame temperature and for Le = 1.2 it is greater.

1. Introduction

Premixed flame propagation in many technologically important flows is essentially

a front propagation problem. The flame is a propagating surface separating regions

of unburnt reactants from burnt products. Such flames are classified as being in

the flamelet regime characterized by large Darnkohler numbers, Da, which is the

ratio of inverse strain rate to chemical time scale. For large Da, the flame responds

quickly to strain, and its local structure is maintained sui_ciently so that the flame

is a propagating front.
In the flamelet regime, the important issues concern the total area and local prop-

agation speed of the front. This information gives the total consumption rate of

reactants which defines the turbulent flame speed. The first of these issues, total

flame area, in a sense incorporates the second issue since it is controlled by the

complete interaction of turbulence and flame. The turbulence convects, stretches,

and wrinkles the flame while it propagates forward tending to reduce the wrinkling.

Most current approaches to understanding this issue involve relating the time evolu-

tion of the area to turbulence effects (convection, strain, diffusion) and propagation

effects (collisions, dewrinkling) (Cant et al., 1990; Candel et al., 1990).

I University of Wisconsin - Madison

2 Center for Turbulence Research
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The second issue in the flamelet regime, the local propagation speed, depends on

local strain and curvature effects. For moderate values of Da less than unity, the

flamelet regime is still valid, but the local structure is altered. The most likely result

is that the flame is compressed and the local speed is reduced (Libby and Williams,
1982). In unity Lewis number flames, this is the primary effect of turbulence on

flames in the flamelet regime.

However, most real reactants have non-unity Lewis numbers, and curvature of

the flame surface becomes important. The Lewis number, Le , is the ratio of

thermal diffusivity to reactant mass diffusivity. The effect of curvature for Le _ 1

can be described with reference to Figure 1. Thermal energy and reactant diffuse

in opposite directions along their respective gradients. For the case Le < 1, the

reactant diffuses more rapidly than thermal energy. In region A, the curvature

of the flame front results in a 'focusing' of reactant. This, in turn, results in an

.enhancement of reaction and local propagation speed. The opposite situation occurs

m region B with reactant being 'refocused' and the local speed decreasing. Hence,

for Le < 1, a wrinkled flame is unstable, and we expect to see a wrinkled, cusped

front. For Le > 1, the situation is the opposite: thermal energy is 'defocused'

in A and 'focused' in B. This results in slower speeds at A and higher speeds at

B - a stable situation leading to less wrinkled flame fronts. This thermo-diffusive

mechanism is well-known for laminar fames. Its importance in turbulent flows
remains an open question.

Y

T A

T

Flame

Propagation

FIGURE 1. The influence of flame curvature on diffusion directions for temperature,
T, and reactant mass fraction Y.

In the present work, we examine the effects of Lewis number on turbulent flames

using direct numerical simulations. The objectives are: (1) begin a data base of

three dimensional, non-unity Lewis number, turbulent premixed flame simulations,

(2) examine the effects of Lewis number on global flame characteristics such as
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the turbulent flame speed and examine various correlations with global turbulence

parameters, (3) study the local flame structure and investigate the thermo-diffusive
mechanism presented in Figure 1. Two cases were run, each with Le = 1.2 and 0.8.

The present work is an extension of the Le = 1 simulations of Rutland et al. (1989),
which should be referred to for more detailed information. The turbulent velocity

fields are referred to as cases 2 and 3 because they were previously labelled this way

in the Le = 1 simulations. These velocity fields simulate decaying homogeneous

turbulence. A modified version of the Rogallo code (1981) was used, and the flame

chemistry is represented by a single step, finite rate (Arrhenius law) kinetic scheme.
The simulations are constant density, and no feedback from the flame to the flow

field is allowed. The code uses spectral methods in a three-dimensional cubic domain

with periodic boundary conditions. Two flame fronts, propagating outwards from
the center of the domain, are required to satisfy the (periodic) boundary conditions.

The unperturbed plane laminar flame speeds, SL , are: 0.390 for Le = 1, 0.416 for

Le = 1.2, and 0.361 for Le = 0.8.

2. Results

_.I. Turbulent flame speed

The turbulent flame speed, ST , is calculated by integrating the reaction rate

over the volume and normalizing by the laminar flame speed. This measures the

total consumption rate of the reactants. Figure 2 shows the effect of Lewis number

on ST • The flame speed is decreased for Le > 1 and increased for Le < 1. This is
consistent with the effect of unequal diffusivities in curved regions of the flame. The

Le > 1 flame is stable and tends to flatten out wrinkled regions, while the Le < 1
flame is unstable and wrinkles are accentuated. The effect of Lewis number on ST

is opposite to the effect on SL • Thus, in these simulations the variation of SL islg a

masked by the turbulence effects even though the ratio _ is of order unity.
Commonly, ST is correlated with u' based on the idea that the wrinkling effect of

the turbulence on the flame front is controlled by u w. The correlations are presented

in Figure 3. Previously, (Rutland et al., 1989) a correlation with u' was found in
Le = 1 simulations but only after flame-turbulence equilibrium is achieved. In our

terminology, equilibrium is reached when the flame speed begins to decay along

with the decaying turbulence. In Figure 3, the different Lewis number curves have
similar shapes which, according to previous work, indicates a correlation exists.

However, there is a definite Lewis number effect. Often these correlations contain
a correction for Reynolds number (Williams, 1985) but not one for Lewis number.

The Reynolds number is identical for the three Lewis numbers in each case, so all

of the variation is due to Le .

_._. Flame curvature

As the Lewis number varies, changes in the curvature characteristics of the flame

are expected. Curvature is defined in planes tangent to constant progress variable

surfaces, positive curvature being convex towards the reactants. The progress vari-

able, c , varies monotonically from 0 in the reactants to 1 in the products, and is

defined as 1 - Y, where Y is the normalized reactant mass fraction.
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FIGURE 2. Turbulent flame speeds (normalized by SL ) vs. time; (a) Case 2, (b)
Case 3

ProbabiLity density functions of curvature are presented in Figure 4. Curvature
is defined as the half-sum of the local principal radii of curvature. For all Lewis

numbers shown, the pdf's are centered around zero (means vary from -0.003 to
0.001) and skewed towards negative values. As c increases, the skewness decreases

to values less than -0.61 for c = 0.9. There is also a tendency for the skewness to
decrease as Le increases.
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The main effect of Lewis number on the curvature pdf's is for the peak values

in the hot side of the flame to decrease as Le decreases. This is indicated by an

increase in the variances. Evaluated at c > 0.5, the vaxiances are 0.06, 0.08, and

0.11 in order of decreasing Le . This indicates the reaction zone becomes more

curved as the Lewis number decreases, which is consistent with our expectations of

thermal-diffusive effects.
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A principal issue for non-unity Lewis number flames is what effect flame curvature

has on local flame speed. In order to focus on curvature effects, the simulations were

examined at times when Da > 1 and strain effects are relatively minor. Contour

plots of reaction rate taken in z, z planes show the local reaction rate depends on

curvature, and the dependence is opposite for Le > 1 wad Le < 1 (Figure 5).

More quantitative results are obtained by calculating the local flame speed. This

is accomplished by interpolating the temperature and reactant mass fraction along

the gradient of c and integrating the resulting reaction rate across the flame. The
results are shown in a joint pdf of flame curvature and flame speed (Figure 6). For

Le > 1, the local flame speed is increased in regions of negative curvature and

decreased in regions of positive curvature. The opposite effect occurs for Le < 1.

The local flame speeds and curvature axe well correlated, and the approximate

slopes of lines drawn through the maximum regions are -0.6 for Le = 1.2 and +0.5

for Le = 0.8. These results are consistent with the qualitative explanation of Lewis

number effects.
Another effect of Lewis number on local flame structure is for strain effects to

qualitatively vary for Le > 1 and Le < 1. Even though the Damkohler number
is 1.3 for data presented in Figure 6 and strain effects are small, they are still

present. This is seen in the pdf's when the curvature is zero and only strain effects
remain. Then the local flame speed is shifted from unity: decreased for Le > 1 and

increased for Le < 1. This is consistent with one-dimensional asymptotic analysis

(Libby et al., 1983) in which the compressive strain is aligned with the flame normal.
Examination of the non-unity Lewis number simulations show this alignment to be

the most common, similar to the Le = 1 simulations.

I_.3. Product temperatures

For an Le = 1 adiabatic system, the temperature and reactant mass fraction

sum to unity at every point. In the product region behind the flames, the reactant

mass fraction is zero and the temperature is unity (T = 1 is the non-dimensional

adiabatic flame temperature). However, for non-unity Lewis numbers, the point-

wise constraint on temperature and reactant mass fraction does not exist, and the

temperature varies behind the flame. This occurs in curved regions consistent with

the local reaction rates in Figure 5. Contour plots of temperature (not shown)

reveal local hot spots behind negatively curved regions for Le > 1 and behind pos-

itively curved regions for Le < 1. This effect was also found in two dimensions by
Haworth and Poinsot (1990) and Ashurst et al. (1987). In the present work, this

is shown in Figure 7 in a plot of the pdf of the temperature conditioned on the

progress variable being unity. For Le < 1, the average temperature is less than

unity, and for Le > 1, it is greater than unity. These local deviations in the burnt

gas temperature can have important consequences on pollutant formation with hot

regions contributing to NOx production and cool regions contributing to unburnt

hydrocarbon production. On initial inspection, Figure 7 may appear to violate the
adiabatic constraints on the system. However, the sample obtained by conditioning

on c = 1 does not define an adiabatic system since temperature gradients exist at

the flames. In addition, the pdf's in Figure 7 consider only the fully burnt gases
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FIGURE 5. Contours of reaction rate; (a) Le -- 1.2, (b) Le -- 0.8

and ignore the partially burnt regions within the flame zones.

3. Conclusion

The direct numerical simulations of turbulent premixed flames with non-unlty
Lewis numbers generally show the flames behaving in an expected manner. Differ-

ential diffusion represented by the Lewis number affects local reaction rates, which
in turn affects the global character of the flames. Most notable in these results is
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the strong correlations between local flame speed and curvature. Indications are

that Lewis number effects could be much more important than strain effects for

determining the local flame speed. Future work will address this issue directly since
it has major implications for flamelet libraries used in turbulent flame models.

An unexpected finding was the strong variation in product temperature with

Lewis number. This is especially significant because of its potential effect on pollu-

tant formation. Further study is required to clarify, characterize, and quantify this
result.

This work expands the previous work of Le = 1 fames. A data set covering
all of the major aspects of single step, constant density turbulent premixed flames

now exists. Future work will endeavor to put together a complete picture of these
flames.
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VI. The turbulence theory group

The projects of the "Theory" group deal with the most fundamental aspects

of turbulence dynamics: the source, transfer, and dissipation of turbulent kinetic

energy, and their structure in space and scale. These aspects are of intrinsic interest,
and an understanding of them is required for the development of accurate and robust

subgrid (and supergrid) models for large-eddy simulation.
Chasnov analyzes the short-time evolution from rest of the velocity field produced

by the action of gravity on an initially homogeneous isotropic density perturbation.

The resulting large-scale energy spectrum is then used as the initial state for a linear

analysis of the final period of decay. The solution indicates that some of the energy

lost to viscous dissipation is replaced by the action of buoyancy forces, and the net

energy decay rate is reduced to the point that the growth of the length scale is

more rapid than the decay of the velocity scale. The turbulence Reynolds number

then increases with time, the assumption of linearity fails, and the final decay is

presumed to be nonlinear, and possibly self similar. The rapid growth of length

scales presents a challenge to the Fourier spectral numerical methods employed for

homogeneous simulations because the spatial period is fixed to adequately resolve

the largest scales initially present and the turbulence scales are soon constrained by

this fixed length. At present we do not have an acceptable solution to that problem.

Domaradzki, in a continuation of his work at the 1988 summer program, investi-

gated inter-scale interactions and energy transfer in homogeneous turbulence. The

processes observed in homogeneous shear flow were the same as those observed

previously in the isotropic case. The physical-space distribution of transfer by non-
local interactions is observed to be intermittent and to coincide more closely with

regions of high large-scale energy than with those of high large-scale strain rate. The

transfer spectra also collapse better when scaled with large-scale energy rather than

with strain rate. This is counter to what one would expect from a disparate-scale

analysis in which the large scales are expanded locally in Taylor series. There the

lowest term, uniform velocity, would not contribute to transfer and the next term, a

uniform velocity gradient, would be the relevant large-scale parameter. The notion

that transfer among the small scales is directly influenced, at high Reynolds num-

bers, by the large scales is counter to the classical hypothesis of Kolmogorov and

its acceptance will require a convincing explanation. At present, analyses based on

triad interactions (EDQNM and the works of Brasseur & Corrsin (1987, Advances

in Turbulence, Springer-Verlag) and Yeung & Brasseur (1990, submitted to Physics

oJ Fluids A) do predict the observed nonlocal interaction, but the corresponding

analyses in physical space have not appeared. In view of the increasing interest in

this problem, I expect that it will soon be resolved.

Farge et al. use a continuous wavelet analysis to study the space-scale structure

of two basic inhomogeneous flows. Wavelet analysis allows one to move between

physical space and scale space in a systematic way that provides access to spatial and
scale information simultaneously. It is then possible to measure such fundamental

PRECEDtix]G PAGE E_..AI','K 9_.o;i F'.L_'-;_
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quantities as the spatial intermittence of energy transfer and the spatially local flow

Reynolds number. The latter is related to the question of whether the spatially local

transfer is the result of local instability, or simply the result of straining by larger

scales. The computational evidence suggests the latter, but this may be simply
because the achievable local Reynolds numbers are too low to allow the former.

This question is obviously related to the conflict mentioned above between the
local cascade hypothesis of Kolmogorov and the transfer measured in simulations.

Wavelets also provide an alternative closure space for large-eddy simulation where

today there is some debate about whether one should close (model) in physical or
wave space.

Bob Rogallo
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Generation of large-scale density +

fluctuations by buoyancy

By J. It. Chasnov 1, and It. S. Rogallo 2

The generation of fluid motion from a state of rest by buoyancy forces acting on

a homogeneous isotropic smaU-scale density field is considered. Nonlinear interac-

tions between the generated fluid motion and the initial isotropic small-scale density

field are found to create an anlsotropic large-scale density field with spectrum pro-

portional to k 4. This large-scale density field is observed to result in an increasing

Reynolds number of the fluid turbulence in its final period of decay.

1. Introduction

Consider a random homogeneous density distribution created in a large body of

fluid at rest. As a physical example, one can envision the creation of such a distribu-

tion in the ocean by melting ice. The buoyancy force acting on the random density

distribution can result in turbulent motion of the fluid. Turbulence enhances mix-

ing, so that subsequent generation of smaller-scale density and velocity fluctuations

is expected, with a corresponding increase in the rates of viscous dissipation and

diffusion. Hence, the scenario we envision is the initial creation of velocity fluctua-

tions through buoyancy forces, a subsequent transfer of energy and scalar variance

to smaller scales where molecular processes are more effective, and the ultimate

smoothing of density fluctuations and return of the fluid to rest. Large-eddy simu-

lations of highly-turbulent buoyancy-generated flows have quantitatively confirmed

this picture of self-induced mixing (Batchelor et al., 1990).

However, in this report we will be concerned with a more subtle effect. Whereas

the dominant feature of three-dimensional turbulence is the cascade of energy and

scalar variance to smaller scales, non-linear interactions can also result in a signif-

icant backscatter of energy and scalar variance to larger scales. In isotropic flows

with steep initial spectra this backscatter gives rise to characteristic k 4 energy and

scalar spectra at small k (Lesieur, 1987). Buoyancy-generated turbulence is axisym-

metric rather than isotropic, and in this report we derive the resulting backscattered

spectrum of the density fluctuations. We further show that the power law of this

density spectrum at small wavenumbers can have important consequences for the

final period of decay.

1 NASA Goddard Institute for Spaze Studies

2 NASA Ames Research Center
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2. Equations of motion

Using the Boussinesq approximation, the fundamental equations for this flow are

V.u=O
(1)

OU

_- + u- Vu = gO - VP + uV2u (2)

00

-_ + u. vo = Dr30, (3)

where u is the fluid velocity, 0 = P_/po, po is the mean density, p' is the density

fluctuation, VP = Vp - p0g, p is the pressure, g = (0, 0, -9) is the gravitational ac-

celeration, v is the kinematic viscosity, and D is the diffusivity of the fluid. It should

be noted that we axe considering situations in which the mean density gradient is
zero.

3. Backscatter of scalar variance

We proceed to calculate the spectrum of large-scale density fluctuations created

from an initial smMl-scale density disturbance. First, (1)-(3) axe Fourier trans-

formed, and the continuity equation is used to eliminate the pressure. We assume

that the effects of v and D may be neglected for sufficiently small times and large
scales. Equations (1)-(3) then become

Oudk, t) f-_ - 9Pi_(k)O(k,t) - ikjPit(k) uj(p,t)uz(q,t)b(k - p - q) dpdq (4)

00(k, t) fOt - ikj uj(p,t)O(q,t)5(k - p- q) dpdq, (5)

where Pij(k) = 6ij - kikj/k 2. It is possible to expand 0(k,t) and ui(k,t) in Taylor

series in time, substitute these expansions into (4) and (5), and explicitly solve for

the k-dependent coefficients (Batchelor, private communication). Such an approach

will formally yield an exact expression for ui(k, t) and 0(k, t). However, in this re-

port, we restrict our attention to the generation of large-scale density fluctuations.

These fluctuations arise from non-linear interactions between the initial density

fluctuations and the subsequent buoyancy-generated velocity fluctuations. Accord-

ingly, we neglect the non-linear term in (4) and further consider only wavenumbers

k smaller than wavenumbers, say of order k., at which the initial density field 00(k)
is appreciable. The resulting equations may then be integrated for small times.
Integration of (4) yields

ui(k, t) = tgPi_(k)Oo(k)

to order t, and integration of (5), using (6), yields

(6)
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0(k,t) = -2t29kj / PJ3(P) O°(p)Oo(q)_(k - p - q) dpq, (7)

for k << k. to order t2. After multiplication of both sides of (7) by O(k',t), taking

the ensemble average, and integrating over k', we obtain

f (O(k,t)O(k',t))dk' = 1-t4-_-4 g

× f kjk_ Pj3(p)Pl3(p')(O°(p)O°(p')O°(q)O°(qw))

x 6(k - p - q)/_(k' - p' - q')dpdqdp'dq'dk'. (8)

Some assumptions about the statistics of the initial density distribution are neces-

saxy to dose (8). We assume that the initial density distribution is isotropic, and
more importantly, that the phases of 00(k) axe randomly distributed. The fourth-
order moment appearing in (8) may then be reduced to products of second-order

moments (by means of the quasi-normal approximation), and the second-order mo-

ments may be expressed in terms of the initial scalar spectrum Go(k) :

Go(p)Go(q) 16(p - p')6(q - q') + 6(p - q')_(q - P')]
(00(p)00(p')00(q)0o(q')) = (47r)2p2q2"_ ,

G0(p)a0(p') (9)
+ (4_r)Zp2q_ 6(p - q)6(p' - q').

Substituting (9) into (8) and integrating over p', q', P and k' yields (the third term

in (9) integrates to zero)

f lO(k,t)O(k',t))dk'= ¼t'a2k kJ

• G0(I k - ql)G°(q)dq (10)

× q)+ P, n3(q)]Pj3(k-q) (-_)Z_k:q- _ "

The wavenumber k has already been assumed to be much less than values of q for

which the integrand is appreciable so that (10) reduces to the simpler expression

" " G°(q)2 d (11)

f (O(k,t)O(k,,t))dk'=lt4gZk..k f P. 3(q)Ps3tq) q"

The integration over the angles of q can now be performed. Using

ff'd_ fo'_dOsinOP,,3(q)PJs(q) : 47r(6"_a_Ja + _5,,_2_j2+ 86m36j3),
(12)
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(11) becomes

J. R. Chasnov and R. S. Rogailo

t4 -2

(O(k,t)O(k',t))dk'- Y 2 8k_] -q_-aq. (13)1-_ [k± + _o °° Go(q)_ "

Equation (13) explicitly displays the axisymmetric nature of the generated large

scale density distribution. The spectrum G(k, t) may be obtained by integrating
(13) over a spherical shell of radius k :

c(k,t) = -zt'd , [= co(q)'.
9 So "q'

so that G(k, t) v_ k 4 for small k.

(14)

4. The Flow at Large Time

We will see that the generation of a large-scale density distribution has important

consequences for the flow evolution at large times. In particular, we will examine

the behavior of the statistics of the velocity field as t --, or. Now, for isotropic tur-

bulence, the final period of decay is adequately described by the linearized Navier-

Stokes equations (Batchelor, 1953), and we proceed here under the tentative a_.

surnption that the asymptotic flow evolution of buoyancy-generated turbulence can

also be so described. The linear equations that we assume to govern the final period
of decay may be obtained from (1)-(3):

Oui(k, t)
Ot - 9Pi3(k)O(k, t) - vk2ui(k, t) (15)

O0(k,t)
Or--- = -Dk_O(k' t) . (16)

If we further assume that this linear final period of decay begins at a time ty, and

write O(k,t/) = Ol(k), then (15) and (16) are easily solved for t > tl:

O(k, t) = Oi(k ) exp[-Dk2(t _ tl)] (17)

u,(k, t) = u_(k, tl) exp[-vk_(t _ tI)]

1

+gPia(k)(v _ D)k 2 [exp[-Dk2( t - tl)] - exp[-uk2(t - ts)] OI(k). (18)

For the following, we restrict our attention to times t >> tI. It is evident from

(18) that the dominant contributions to (u s) will come from small wavenumbers.

Furthermore, if we assume that the kinetic energy spectrum follows the same power

law behavior at small k as the density spectrum (which can be shown analytically by

a careful computation of the kinetic energy backscatter spectrum), then the second
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term on the right side of (18) dominates the first term due to the presence of the

factor k -2. Accordingly, we neglect the first term on the right side of (18), multiply

(18) by ui(k',t), and integrate over k' and k to get

_9, _o°° dl¢, [expt-Dk't] - exp[-vk't]]'_ (v k, (19)

where we have performed the angular integration over k and have introduced the

constant _, of order unity, that arises from this integration. The behavior of (u 2) as

t -+ c0, may now be obtained from (19) by changing variables of integration from

k to r/= kv/t :

_.g2ts/2 - exPt-vrl2]]_ G /(rllv/t) . (20)
(u 2) - (v--_j2 _0°° d_/[expt-Dr/2l T/'

For large ,7, the contribution to the integrand in (20) decreases rapidly, so that when

, -. co, o,(n/vq) may be expanded in a Taylor series around zero. If we assume

that

G1(k ) oc k'_ near k = 0, (21)

then to lowest-order in r//Vq

oi(.I vq) t-'/2, (22)

so that as t _ co,

(u2}oct (3-'0/2 • (23)

For thebackscatterspectrum computed in§3,n isequalto4 yieldinga mean-square

velocitydecayingliket-I/2•A divergenceinthe mean-squarevelocityoccursforn <

3. Obviously,the assumptionthatthelinearanalysisisvalidat asymptoticallylarge

times must be falseforn < 3,i.e.,ifthe initialdensityspectrum has a power law

behaviornear wavenumber zerolesssteepthan ks. However, we must alsoconsider

the validityof the linearanalysisforthe casen = 4. A lengthscaleL associated

with the energy containingeddiesmay be calculatedfrom (18)(Batchelor,private

communication),and itcan be shown thatallreasonabledefinitionsyield

L oct1D, (24)

independentofn,atlargetimes.Hence,forn = 4,the Reynolds number R behaves

asymptoticallylike

R t'/" (25)
- (X ,

which is also at odds with the assumption that the final period of decay is linear.

The asymptotic scaling given by the linear analysis is therefore invalid and the
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determination of the correct asymptotic behavior of (u 2) in the final period of decay
requires consideration of the full non-linear equations. Such numerical simulations
of the full equations will be presented elsewhere.

5. Conclusions

We have shown that an initially isotropic small-scale density distribution will

generate an anisotropic large-scale density distribution with a small wavenumber

spectrum proportional to k 4. Furthermore, this large-scale density distribution has

important consequences. In particular, it results in an increasing Reynolds number

of the flow in the final period of decay. A decreasing Reynolds number implies the

eventual validity of the linear analysis, yielding a reductio ad absurdum. Remarkably
then, the motion thus generated by any initial density disturbance, no matter how

weak, approaches an infinite Reynolds number flow asymptotically. This is true,
even though the kinetic energy of the flow decays to zero.
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Interscale energy transfer ,n "" 7

numerically simulated turbulence

By J. A. Domaradzkil_ R. S. Rogallo 2, and A. A. Wray 2

Energy transfer is investigated for flows obtained by direct numerical simulations

of low Reynolds number homogeneous-shear and isotropic turbulence and by large-

eddy simulations of high Reynolds number isotropic turbulence. The transfer in

spectral space is found to be local but results from interaction between separated
scales. The transfer among small scales is highly intermittent in physical space.

The measurements suggest an important correlation between transfer among small

scales and the energy of large scales.

1. Introduction

Using results of low-Reynolds-number direct numerical simulations (DNS), Do-

maradzki and Rogallo (1988, 1990) analyzed the energy transfer in isotropic turbu-

lence and concluded that beyond the energy containing range the energy was trans-

ferred among scales of motion similar in size but that the interactions responsible

for this local energy transfer were noniocal in k-space. The same transfer mech-

anism was also found when the eddy-damped quasinormal Markovian (EDQNM)

approximation was applied to high Reynolds number flows which are inaccessible

to the DNS technique.
The conclusions concerning the sppaxent universality of this transfer mechanism

are extended in this work to homogeneous shear flows and to high Reynolds number

isotropic flows obtained by large-eddy simulation. We also devise a physical-space

representation of the spectral energy transfer calculated in k space that ailows us
to estimate the spatial intermittency of the energy transfer and the spatial corre-

lation between quantities defined using only large-scales flow information and the

dynamically important energy transfer among different scales. In particular, this is

usefnl in evaluating the performance of subgrid-scale models formulated in physical

space, e.g. the classical Smagorinsky eddy viscosity model.

2. Numerical Velocity Fields

We have used velocity fields generated by numerical simulations that were run

for sufficiently long times to fully establish nonlinear interactions.

The velocity field C128U8 is the result of a DNS of uniformly sheared homo-

geneous turbulence performed by Rogers (1986), and LES128 is the result of a

1 University of Southern California

2 NASA Ames Research Center
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large-eddy simulation of forced isotropic turbulence, at nominally infinite Reynolds
number, performed by Chasnov (1990). The energy spectrum of LES128 exhibits

a k -sD law over the entire range of simulated wavenumbers. The field K128 is

obtained from a DNS of isotropic turbulence performed by Rogallo (unpublished).

Its use is motivated primarily by the fact that the two dynamically important pro-

cesses that determine the evolution of the energy spectrum, i.e. viscous dissipation

and nonlinear transfer, are very well resolved. This resolution is obtained at the

expense of lowering the Reynolds number as compared with the two other cases.

3. Basic Quantities

The Navier-Stokes equations, in the Fourier spectral representation, for the fluc-

tuating velocity field un subjected to uniform shear U = (sz2,0, 0) are

klkn 0

+2s-_-u_(k, t) + ski b-_u.(k, t) - s_.,_2(k, t) (1)

iknun = 0 (2)
where

e.t_.(k) = km(_._- k.k_/k _)+ _(6._. - k.k_./k2), (3)

u is the kinematic viscosity, and the summation convention is assumed. In subse-
quent formulae explicit time dependence will be omitted.

The equation for the energy amplitudes ½1u(k)l 2 = ½u,_(k)u_(k)is obtained from
(1)

01 1 0 1_lu(k)[ 2 = -2vk 2 lu(k)l 2 + T(k) + ska-_2_lu(k)12 _ sRe{ua(k)u_(k)} (4)

where the asterisk denotes complex conjugate.

The nonlinear energy transfer is

T(k) =1 [u,_(k)P,_t,,_(k)/ut(p)u,,_(kp)dp] (5)_Im *

and the following two terms in (4) containing s describe energy transfer due to the

mean shearing deformation of turbulent eddies and turbulent energy production

by the mean shear respectively. A detailed description of these effects is given

by Deissler (1961), Fox (1964), and Lumley (1964), and is summarized in Hinze's

(1975) monograph. Note that the corresponding equations for isotropic turbulence

are obtained from (1) by taking s = 0. In particular, the nonlinear transfer term (5)

has the same form for both homogeneous shear turbulence and isotropic turbulence.
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The principal quantity of interest here is the energy exchange between a given

mode k and all pairs of modes p and q = k - p that form a triangle having k as

one of the legs and where p and q lie in prescribed regions 77 and Q of the spectral

space respectively. For a given k, confirring p and q to 77 and Q is equivalent to

selecting a specific set of triangles from all of the possible triangles contributing to

the energy transfer at the wavevector k in (5).
In this work, we choose 77 and Q as shells in the wavenumber space k - _Ak <

[k I < k + _Ak with a shell thickness Ak. This choice is natural for isotropic
turbulence and is also convenient for other homogeneous fields as first suggested by

Batchelor (1953).
The net nonlinear energy transfer to wavenumber band k is denoted by T(k),

and the contribution to this transfer resulting from nonlinear interactions between

wavenumbers in the band k and wavenumbers in the bands p and q is denoted by

T(k[p,q). According to this definition

T(k) = E E T(klp, q) = E P(klP) (6)

p q P

where the P(klp) is the result of summation of T(klp, q) over all bands q and is

interpreted a.s the contribution to the net energy transfer into band k due to all

interactions involving band p.
The functions T(k), g(k]p), and T(klp, q) give progressively more detailed infor-

mation about energy transfer among different scales of motion in a turbulent field.

The method of computing these functions is described by Domaradzki and Rogallo

(1990).

4. Analysis of Energy Transfer in Spectral Space

All of the contributing terms of (4), computed for the field C128U8 and averaged

over spherical shells with thickness Ak = 1, axe plotted in figure 1. The calculation

oftheUneartransferski ½I (k)l2 suffersfromlowaccuracydueto thecoarse
resolution of k, and we believe that this term is close to zero for k > 40, contrary

to the plotted results. Despite this numerical error, a few important conclusions

can be drawn from these results. Nonlinear transfer, viscous dissipation, and mean

shear all make significant contributions to the energy balance for wavenumbers

k < 40 which comprise the energy containing range and a significant fraction of

the dissipation range. Energetics of the smaller eddies (k > 40) is affected only

by nonlinear transfer and viscous dissipation which are roughly in balance. Thus,

the energetics of turbulence in about half of the spectral domain (k > 40) is not

a_ected directly by the large scale mean shear.

The triad structure of the nonlinear energy transfer term is illustrated by plotting

P(klp ) in figure 2a as a function of k for p fixed in a wavenumber band beyond

the peak of the energy spectrum. The contributions T(k[p,q) to P(k[p), from all

significant bands q, are also included. The peaks of P(k [p) are located in the vicinity

of the band p, indicating that the energy transfer is primarily between comparable

scales of motion. However, the decomposition into functions T(klp, q) reveals that
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FIGURE 1. Spectral energy balance for the field C128U8. _ production,
.... dissipation, --.-- nonlinear transfer, ----- linear transfer. The linear transfer
data has been smoothed.

the largest contributions to this local transfer come from the interactions involving
a scale in the energy containing range 5 < q < 20. Thus, for homogeneous shear

flow we obtain the same result as previously reported by Domaradzki and Rogallo
(1988, 1990) for isotropic flows: local energy transfer between two scales beyond the

energy containing range results from nonlocal interactions with scales in the energy
containing range.

Analysis of the nonlinear transfer for the two remaining velocity fields, LES128
and K128, provided the same qualitative results.

An attempt was made to find a similarity scaling for the functions T(k[p, q). For

a given energy spectrum, the following transformation collapses reasonably well all
curves T(klp, q) for a band p beyond the energy containing range.

T(k[p, q) = pE(p)E(q)To( k - p) (7)
q

The similarity variable ,_ = (k - p)/q is deduced from geometric relations for a

triad with legs k,p, and q and the scaling factor pE(p)E(q) is ad hoc (but is found in

the EDQNM theory for power-law spectra in the disparate-scale limit). In figure 2b

we show the result of scaling (7) applied to the measured functions T(k[p,q) of

figure 2a. Interestingly, the transfer scales with the energy E(q) of the large eddies

rather than with their rate-of-strain qE(q)l/2 which is the scaling postulated by a
number of classical closure hypotheses (Monin and Yaglom, 1975). We have not

been able to propose a convincing dynamical model of transfer processes which
would provide scaling (7).
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5. Physical Space Representation of Spectral Energy Transfer

Let us denote by N_(k) the contribution to the integral (the nonlinear term)
in (1) from only those interactions between modes p and q = k - p such that

each of them is confined to one of the two prescribed wavenumber bands 77 and Q.

This quantity is computed using the method described by Domaradzki and Rogallo

(1990). Its Fourier transform to physical space, N_(x) say, gives the contribution

to the rate of change of velocity in physical space u,(x, t) caused by the nonlinear

interactions involving two scales from the respective wavenumber bands 77 and Q

in the spectral space. Note that these interactions influence all modes k that can

form a triangle with modes such that one is in 77 and the other in Q. Consider next

a velocity field truncated to a prescribed wavenumber band )C, i.e.

u,,(k), if kdCu_(k) = 0, otherwise. (8)

The Fourier transform of (S) to physical space, u_(x) say, represents the contri-

bution in physical space that scales from band K; make to the total velocity. The
contracted product of these two physical space quantities

T_C_'_(x) = uf(x)N_(x) (9)

gives a physical space representation of the energy transfer to/from modes in the

k-band due to their nonlinear interactions with modes in the p- and q-bands.

An interesting case is obtained by dividing wavenumber space into two disjoint
regions/C (k < k,) and 77 (k > k,). The quantity

TsGs(xlkc) = T_c_'_'(x) + T_:_:z (x) (10)

provides a physical space representation of the rate of change of energy of large

scales k < kc due to nonlinear interactions involving small scales k > kc. This is

precisely the energy transfer process which is the subject of subgrid-scale modeling.

We have computed transfer functions (9) and (10) for various wavenumber bands

of the field K128. The low wavenumber band Q is chosen to cover the entire

energy containing range 0 < q < 10. Figure 3a shows one plane from the full

transfer (9) representing in physical space the energy transfer to eddies in the band

23 < k < 28 caused by their interactions with eddies in the bands 20 < p < 25 and

0 < q < 10. The transfer function is spatially intermittent and is predominantly
positive, indicating a flow of energy from the larger scales p to the smaller scales

k. In figure 4b, we plot the same function for 17 < k < 22. The transfer is now

predominantly negative as expected and occurs at roughly the same locations as

the transfer of figure 3a. We thus conclude that the local energy transfer between

similar wavenumber modes in spectral space is intermittent in physical space.

We have attempted to correlate this spatial distribution of energy transfer with

a number of simpler quantities (rate-of-strain, dissipation, energy, etc.) calculated
from the velocity field truncated to contain only either large or small scales. In



Energy transfer in homogeneouJ turbulence 32fi

0 bql_7" _rJ m_ ;zP

"_ C

o L

,%_

, t (1 ._,_ ,o

_°.. . ,_ _
|.m l.n t.m _,m 4,_ s.m ..m

(a)

o,m l.w l.m _l,gg aJo s,ull ll.m

(b)

Fmu&_. 3. Energy transfer T_Z_(x) of K128 in physical space for 20 < p <

25,0<q<10: (a) 23<k<28,(b)17<k<22"



"OI > _/> 0 (q) '8_ > _/> _ (_) :pu_q aaquanuo^_,_ o_ a:)_ds l_a_:)ads

u.t po_una_ pi_!/ _!_OlaA aq_ aoj a:_ds l_:)!s_qd ut ,{_aaua _ualnqarkL "T,a_lnox_I

,., ,., ,., _, .., ..,
___T .'°° ._._

-,:2 -_g'_kv

• 0* o< 0_

(,,)

U'|.W.O

U'!

, oi O0

;k,_o.._._o_..
6

• 0

•= m'S

, ._:_

a_A4 "V "V puo 'o11o6oX "S "X 't._lZPtuotuo_I "V T O_._



Energy transfer in homogeneous turbulence 327

figures 4a and 4b, we show the physical-space distribution of energy for the veloc-

ity field truncated to 23 < k < 28 and 0 < k < 10, respectively. Both energy

fields correlate very well with the energy transfer among small scales shown in fig-

ure 3. Correlation of other calculated quantities with the energy transfer, notably

the square of the rate-of-strain tensor, was generally much worse. Therefore, we

conclude that the energy transfer among small scales occurs mostly at those phys-

ical locations that contain large amounts of turbulent energy rather than at the

locations of high strain rate. This correlation is the physical space counterpart of

the observed importance of the nonlocal triads in the energy transfer process in

spectral space.
We have used formula (10) to calculate subgrid-scale (SGS) energy transfer for

the field K128 with the cutoff wavenumber kc = 10. The full SGS transfer field,

plotted in figure 5a for a typical plane, is characterized by the presence of both

negative and positive regions. These indicate energy flux from and to the large

scales respectively due to subgrid-scale interactions. The classical Smagorinsky

model (Smagorinsky, 1963) for this transfer, based on the velocity field truncated

to the large scales 0 < k < 10, is plotted in figure 5b. Note that the model captures

properly the locations of the regions where the transfer is most intense but fails

completely to predict the inverse energy transfer from small to large scales.

6. Conclusions

Using results of direct numerical simulations of homogeneous shear turbulence, we
have shown that the nonlinear energy transfer in spectral space beyond the energy

containing range has the same character as reported previously for isotropic turbu-

lence: local energy transfer caused by nonlocal triad interactions. The same conclu-

sion was reached for velocity fields obtained in large-eddy simulations of isotropic

turbulence at high Reynolds numbers.
An ad hoc scaling roughly collapses the transfer T(klp, q) to a self-similar form.

This scaling implies an important role which the energetic scales play in the energy

transfer among small scales, but the process does not appear to be simply straining

of the small scales by the large ones.

We have devised a physical space representation of the energy transfer processes

among scales of motion belonging to three distinct wavenumber bands in spectral

space and conclude from it that the energy transfer among small scales is highly

intermittent in physical space. Furthermore, regions of significant transfer appear

to correlate better with regions of significant large-scale energy than with those of

significant large-scale strain rate.
As a particular case, we have calculated the subgrid-scale energy transfer in

isotropic turbulence. This SGS transfer exhibits regions of energy drain from large
to small scales as well as significant regions of reversed energy transfer from small

to large scales. The Smagorinsky eddy viscosity model captures the locations of

the most intense transfer but predicts that it is always from large to small scales,

contrary to the measurements from direct calculations.
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Continuous wavelet analysis of coherent structures

By M. Farge i, Y. Guezennecl, C. M. Ho s AND C. Meneveau i

We perform an analysis of planar cuts through three-dimensional turbulent fields

(planar channel flow and mixing layer) using the 2D continuous wavelet transform.

We propose two new diagnostics: (a) a measure of intermittency I(r, _), which is

the ratio of local energy and average energy at a given scale r. (b) a local Reynolds

number, defined on the local velocity contribution at a given scale, computed from

the wavelet transform of the three velocity components, the scale of the transform,

and molecular viscosity; this gives a representation of the local non-linearity of the

flow viewed in both space and scale. We find, for all the analyzed flows, strong

small-scale intermJttency located in the ejection regions for the channel flow and in

the vortex core for the mixing layer.

1. Introduction

The wavelet transform is a new technique, first introduced by Grossmann and

Moriet (1984), which allows the decomposition of a signal into contributions of

both space (or time) and scales (or frequencies). Therefore, it is particularly well

suited for the study of transients or possible singular behavior of a signal. The

interesting feature of the wavelet transform, as opposed to the traditional Fourier

transform, is to use an analyzing function (called wavelet) which is localized in

space. The scale decomposition is performed by dilating or contracting this wavelet

before convolving it with the signal to be analyzed. This procedure is an optimal

compromise in view of the uncertainty principle: the wavelet transform gives a very

good spatial resolution for the small scales and a very good scale resolution for the

large scales. As for the Fourier transform, the original signal can be reconstructed

from the wavelet transform, and the energy can be computed in the wavelet space

(Parseval).
Several orthonormal wavelet bases exist (Lemarie & Meyer (1986), Daubechies

(1988), Mallat (1989)), which conserve information and which are, therefore, con-
venient from a computational point of view, especially in higher dimensions (for an

application to turbulence, see Meneveau (1990)). In the present work, we explore
the use of the continuous wavelet transform (which is non-orthonormal and, there-

fore, redundant) for the analysis of turbulent flows (Farge & Rabrean 1988). The

idea is to benefit from this redundancy and observe the signal for both scale and
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2 The Ohio State University

3 Univ. Southern California

4 Johns Hopkins University
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position in a continuous fashion; this is expected to highlight coherent structures

which should display some coherence not only in physical space but also across a

range of scales (for a review of the continuous wavelet transform and its applica-
tions to turbulence, see Farge (1990)). Since the continuous wavelet transform adds

one more dimension to the representation, at present we will study two-dimensional
cuts through three-dimensional flow fields.

The objective is to compute the wavelet transform of flow-fields resulting from
direct numerical simulations of turbulent flows. First we study the velocity and
temperature fields in a plane channel flow near the wall in order to measure its

intermittency and to try to correlate the active regions (where energy is still high
even at the small scales) with some dynamical features such as the ejections from
the sublayer. We will also study the isotropy of the flow at all scales and locations.

Then we study the simulations of the temporal mixing layer, where the objective

is to also locate the small-scale activity in the flow and to measure its intermittency.
For this we study not only the wavelet transform of vorticity, velocity, and a pas-

sively convected scalar, but we also compute the local Reynolds number. This gives

a good picture of the local instability of the flow, measuring the ratio of non-linearity
and dissipation at every scale and location.

For all turbulent flows studied here, we will try, using the continuous wavelet
transform, to answer the three following questions:

(1) Where are the small scales of the flow, and how intermittent are they?
(2) What is the local scaling of energy or enstrophy, and is it different from one

structure to another?

(3) What is the topology of the iso-Reynolds number manifold and what is its
scale extension at the dissipative level?

2. The Continuous Wavelet Transform

The discussion of the wavelet transform is done in a general setting in n dimen-
sional space. The only constraint imposed on a function

¢(_) e L2(R"),

(R=real numbers) to be a wavelet is the admissibility condition:

oo o0

Igl" <oo.

The function ¢(_) can be either a real or complex-valued function.
integrable, Eq. (1) actually implies that it has zero mean:

(1)

If ¢(_) is

oo oo

o, o.
--00 --00

From this basic wavelet, we generate the family of dilated, rotated, and translated
wavelets:
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Cr,a,_' (_) = c(r)-'*_b( fl-] _ - _ )' (3)
r

where r E R + is a scale dilation parameter, fl E (R '_ × R") is the (unitary) rotation

tensor, _ E R'* is the translation vector, and c(r) is a normalization constant. Such

normalization is actually the L 2 norm if c(r) = r -1/2, and it is the L 1 norm if

c(r) =r-'.
The analysis of the signal f(_) is then given by

oo oo

... f(z)¢r,.,_,(z)d • (4)
/(r,n,_)- 4v7__0 _,,o

Here ¢* denotes the complex conjugate of ¢. In two dimensions, the rotation tensor

can be characterized by a single angle 0, and there the reconstruction formula reads:

oo 2w oo oo

r3 (s)
r= O_-O zI-_--°O Y _-_-°°

More of the basic properties of the wavelet transform are listed below. Here we

denote the wavelet transform of a function f(z) in the operator notation W[f(z)]

or with the tilde notation, ](r, fl, _).

Linearity:

Translation property:

w[f(_- _0)1= 1(,, n,¢ - _0).

Dilation property:

Energy conservation:

oo co

/
--OO --OO

O0 OO OO

1/// /...
0+ 01 0,,-1 _=-co z_=-oo

Characterization of the local regularity of a function:

dr d'*- l _t d'_ _

rn+l

(7)

(8)

(9)
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{l](,,,c,,io){{_,,,,,.%fo,.,.--,o+, (lO)

a is the degree of differentiability of the function at 30 if a _> 1, or the Lipschitz
exponent of the singularity present in 30 if -1 < a < 1.

Besides the necessary admissibility condition, the choice of the analyzing wavelet
is determined largely by the condition of good localization as well as smoothness in

both physical and spectral space. These conditions can be expressed as

1

{¢(3) {< 1+ I_"{" (11.a)

and

I "¢(_')l< 1
1-1--[ ];- f¢o In' (11.b)

k0 being the dominant frequency of the wavelet, and n should be as large as possible.

For instance, the Haar wavelet (similar to a French hat) is irregular in space and does

not decay fast enough in spectral space; the Maar wavelet (mexican hat) is smooth

in physical space, but it is not regular enough is spectral space. For the purpose of
this work, we also prefer to use a complex-valued wavelet. This is because for the

analysis of one-dimensional signals the phase has proven to be rich in information,

e.g. to detect singularities or to compute the instantaneous frequency (Escudier &
Torresani, 1988). The local energy density at every scale can then be obtained from
the modulus of the complex wavelet transform.

A good compromise in terms of both space (ll.a) and scale (11.b) localization is
attained with the Morlet wavelet, which is a complex valued function:

¢(z) = eik°'_e- +l_ff_- O1. (12)

Here /_0 is related to the number of oscillations of the basic wavelet within the

modulated region, and C1 is a correction term that guarantees admissibility (1) by
forcing the mean of ¢ to be equal to zero. In our code, the wavelet is sampled in

physical space, then transformed _ spectral space via FFT, and the admissibility
condition is satisfied by setting ¢(k -- 0) -- 0. The convolutions needed to evaluate

the wavelet transform (Sq. (4)) are performed in Fourier space (using FFT).

Figure 1 is a plot of the 2-D Morlet wavelet for ] k*0 I= 6 and 0 = 0.

3. Intermittency function and local Reynolds Number

An unambiguous characterization of the local 'activity' of a scalar field f(a_) is
given by the intermittency function I(r, _). It is defined in terms of the wavelet
transform of f(£) as follows:

1(,.,._)_ I .f(,',_) 12
<l 1(,',_')I_>,+,' (13)
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FIGURE 1. The two-dimensional Morlet wavelet, with 8 -- 0 and k0 = 6.

where the averaging extends over all points _. I(r, _) then measures local deviations

from the mean spectrum of a field, at every scale.

Another measure of interest is the local Reynolds number, defined in terms of

the scale parameter r, the kinematic viscosity of the fluid v, and some local root-

mean-square value of the velocity field. This rms value should only correspond to

contributions to the velocity field at that particular scale r. We concentrate on

planar cuts through three-dimensional fields, but still consider all three velocity

components on that cut. Let _i(r, z,y, 8) be the continuous (2D) wavelet transform

of the ith component of the fluctuating part of the velocity field in the plane of the

cut, defined as follows:

oo co

1 f f I ,. ,, ,, (14)_(r,z,y,o) - _(_ ,Y') _',.,o,_,y__ ,y ) dx' dy'.
_?-'_ -- 00 --00

From here on we concentrate on a single angle, say O = 0, O -- r/2, or the value of

the wavelet coefficients averaged over 16 different angles equally sampled in [0, 21r].

The total kinetic energy can be obtained from

(x) oo oo

q2 1 f / f _,(r,z,y)2 dxdydr (15)= _ _ ,
_-__._0+ z OQ ]/------oo

where

: + +
(16)
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Here fi'(r, z, y) is the characteristic rms velocity at scale r and at location (z, y) in

the plane being analyzed. Now we can define the local Reynolds number at every
scale, according to

Re(r,=,y) = a'(r,=,y) r

The expectation is that at large scales r ,-, L, the Reynolds number should roughly
coincide with the usual large-scale Reynolds number Re = u'L/v, where u' is the

rms turbulent velocity and L is some integral scale of the flow. At the smallest

scales (say r ,_ 7/, where r/is the Kolmogorov scale of the flow), one would expect
this Reynolds number to be close to unity. The question we want to address here is

about the variability of such a Reynolds number defined locally in space and scale.

That is, are there locations where such a Reynolds number at some smaLl scale is

much larger than in others, and how such regions correlate with regions of small-

scale activity in the flow? If so, then this could be a measure of the non-Linearity
at small scales (or at any desired scale); it is unambiguous because it is based on

energy considerations. Such regions of high local Reynolds number could then also
be interpreted as regions of strong non-linearity within the flow.

As mentioned in section 2, we utilize the Morlet wavelet to perform the analysis.

In addition to location and scale, the angle of the wavelet can also be prescribed.

For notational convenience we omit explicit reference to this angle when using 0 = 0

(with respect to the x-axis). When using another angle, we indicate this by adding

another variable, e.g. Re(r, z, y, 0). Another issue of importance when computing
the local Reynolds number is the precise value of the constant C,_. In the continuous

case it is given by Eq.(1). However, in practice the convolutions needed to obtain
the wavelet transform will be done discretely, which means that some discretization

error is unavoidable. To obtain an effective constant C¢ such that energy is the
same in the physical and wavelet spaces, we compute C¢ from

oo _ oo

f f f +
C@ ___ o+--oo--oo

oo = (18)
f f [u'(z,Y) _ + u2(z,Y) 2 + un(z,y) 2] dzdy

--00 --00

This is then used to obtain _'(r,z,y) (16) and Re(r,z,y) (17).

4. Analysis of near-wall dynamics in turbulent channel flow

In this section, we analyze a turbulent channel flow at a Reynolds number Re,- =

180. In addition to the velocity field, three passive scalars (heat for Pr = 0.1, 0.7,
2.0) are also computed for the case where one wall is uniformly hot and the other is

uniformly cold. Both the hydrodynamics and the scalar fields are fully developed.
For more details about the flow characteristics and the computation, see Kim and

Moin, 1989. In this report, we will concentrate solely on the analysis of the velocity
component normal to the wall, the temperature for Pr = 0.7 and the pressure.
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FIGURE 2. Iso-temperature lines in a horizontal x-z plane at y+ = 10, in the plane
channel flow simulation. Black spots indicate regions of high values of the normal

velocity.

Since the wall region is the most active dynamically, the analysis is focused on one

single plane, parallel to the wall at y+ = 10. Figure 2 shows iso-lines of temperature
in that plane. Black regions indicate the maxima of the normal velocity field. While
the normal velocity is the one responsible for the advection of heat from the wall,

the two fields exhibits a very different character. The temperature field is very

streaky, while the regions of active transfer from or to the wall are very localized.
Next we compute the continuous wavelet transform of the temperature field for

0 = 0 and for scales ranging from r = 64 to r = 4 (in units of the elementary

computational grid). In all subsequent figures, the r-axis is logarithmic (the small
scale r=4 on the top and the large scales r=64 on the bottom). We consider 40

steps for the discretization of r, which means a base of 1.074 for the logarithmic
increments. In Fig. 3, we show the intermittency factor I(r, z, z), defined as the

energy (modulus squared) of the wavelet coefficients normalized at every scale on

the average energy at that scale (13). We observe the following features:

(a) In the large scales, the energy is evenly distributed in space.

(b) On the contrary, the temperature field at the small scales is highly intermit-
tent; in four locations at the smallest scale, the local energy is about 15-20 times

the average energy at that scale.
(c) The flow remains anisotropic, with similar elongation factor at all scales.
Let us then compare the wavelet transform of the temperature field with the one

of normal velocity. Figures 4 and 5 show the wavelet transforms in the x-z plane,

where the r-dependence has been compressed; this representation is analogous to

viewing the wavelet coefficients as in Fig. 3 from 'above', parallel to the r-axis. In

Fig. 4, we use the transform with 8 = 0, which selects the streamwise contributions,
while in Fig. 5, we use 0 = 7r/2, which selects the spanwise contributions to the
fields. In both figures, we plot the transform of the temperature (4(a) and 5(a))

and the transform of the normal velocity (4(b) and 5(b)).
We observe that regions of activity in the temperature field are correlated with
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FIGURE 3. Wavelet transform of temperature field for 8 : 0 in plane channel flow
at y+ = 10.

the spots where vertical velocity is high. These regions correspond to ejections from

the viscous sublayer. In the case 0 = 0, it is interesting to notice that even though
the streaks are elongated in the streamwise direction, the wavelet transform shows

some very localized active regions. This, therefore, indicates strong local changes in

the x-direction inside or at the end of the streaks. These events are also correlated

with the peaks of vertical velocity (Fig. 2). This is probably due to the fact

that the temperature, as the streamwise velocity streaks, are very passive almost

everywhere, except in very localized regions associated to the ejection mechanism.

In other words, this intermittency function allows to locate very precisely the regions
characterized by strong dynamics.

In the spanwise direction (considering 0 = 7r/2) we observe similar correlation

between temperature and normal velocity; however, the activity is less intermittent.

The maximum value of I(r, z, z) for this case is 13 for the temperature, and 18 for
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FIGURE 4(A). Intermittency function I(r,z,z) of temperature field in plane
channel flow at y+ = 10, in the direction 0 = 0. Shown are iso-lines of I(r, z, z)

ranging from I = 2 to I = 20.

FIGURE 4(B). Intermittency function I(r, z, z) of normal velocity field in plane
channel flow at y+ = 10, in the direction O = 0. Shown are iso-lines of I(r, z, z)

ranging from I = 2 to I = 46.

the vertical velocity, while for the streamwise direction it is respectively 20 and 46.

We now turn our attention to the pressure field in the same plane. Fig. 6 depicts

the pressure fluctuations at y+ = 10, highlighted with the regions of strong normal

velocity. Despite the integral character of the pressure, the pressure fluctuations
tend to be very spotty and concentrated primarily in the regions with strong normal

velocity perturbations.
The transform of the pressure field is shown in Figure 7a and 7b for the streamwise

(0 = 0) and spanwise (0 = _r/2) directions, respectively.
The intermittency values in the spanwise and streamwise directions are similar

in distribution and magnitude. As noted before, the pressure fluctuations are rela-

tively homogeneous at the large scales and highly intermittent at the small scales.
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FIGURE 5(A). Intermittency function I(r,z,z) of temperature field in plane

channel flow at y+ = 10, in the direction 8 = lr/2. Shown are iso-lines of I(r, z, z)
ranging from I = 1 to I = 13.

................. T .................. I z
T ................. "7............ -7 ............. I-................. 7 ..................

FIGURE 5(B). Intermittency function I(r, z, z) of normal velocity field in plane

channel flow at y+ = 10, in the direction 8 = _'/2. Shown are iso-lines of I(r, z, z)
ranging from I = 2 to I = 18.

Furthermore, the anisotropy of the small scales observed for the temperature and

normal velocity is also present for the pressure fluctuations, and it appears that

the elongation in the streamwise direction remains similar over a significant range
of scales. Again, regions of high intermittency for the pressure can be correlated

with regions of strong ejections (normal velocity away from the wall) which set up
strong streamwise and spanwise local pressure gradients. This confirms the impor-

tance of these localized pressure gradients for "momentum mixing" as discussed by

Guezennec et al. (1990). As pointed out earlier, this intermittency is very useful in
pinpointing the regions dominated by strong dynamics.
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FIGURE 6. Iso-lines of pressure in the x-z plane at y+ --- 10 in the plane channel

simulation. Black spots indicate regions of high values of the normal velocity.
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FIGURE 7(A). Intermittency function I(r,x, z) of pressure field in plane channel

flow, in the direction 8 = 0. Shown are iso-lines of I(r, x, z) ranging from I = 2 to

I=22.
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FIGURE 7(B). Intermittency function I(r,x,z) of pressure field in plane channel

flow, in the direction 0 = 7r/2. Shown are iso-lines of I(r, z, z) ranging from I = 2

to I = 26.
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5. Analysis of mixing layer

In this section, we perform the continuous wavdet analysis of numerical simula-

tions of the temporally evolving mixing layer by Rogers & Moser (1990). The fields

analyzed correspond to the vortex produced after the first merging (namely after

the mixing transition). We consider a cut in the horizontal direction going through

the center of the core region. Iso-lines of vertical (wy) vorticity are shown in Fig.

8. The center of the plot corresponds to the spanwise vortex core. The alternating

sign vortical structures seen on either side of the plot represent cuts through the

"ribs" (the streamwise vortices formed between the vortex cores).

z

t + +'C;+., + . _ . .++p . .
..... + #_ " x

FIGURE 8. Vorticity contours in a x-z plane in the mixing layer (Rogers & Moser,
1990).

We compute fi,(r, z, z), fi2(r, z, z) and fi_(r, z, z), the two-dimensional wavelet

transform of this field for each velocity component ul (streamwise), u2 (vertical)
and us (spanwise).

We also compute the wavelet transform of the vertical vorticity component, for

which we plot the intermittency function/(r,z,y) defined in section 2 (13) giving
for each scale the local deviations of the modulus around the spectral mean value.

Such representations of the transform are shown in Fig. 9.

The following conclusions regarding vorticity can be reached:

(a) The large-scales are evenly distributed in space.

(b) There is a very strong intermittency (reaching a factor [ = 120) of the small
scales and these are localized in the vortex core.

(c) We observe return to isotropy at the small scales (such a conclusion is drawn

from combining both figures 9(a) and 9(b))

We now analyze the velocity fields. Figures 10(a), (b) and (c) show I(r, z, z) for
each velocity component, again viewed by 'collapsing' the r-axis. It is clear that

the active zones of the streamwise velocity (Fig. 10(a)) are localized in a narrow

region along the centerline of the vortex core and they are highly intermittent (the

maximum value of I(r, z, z) reaches 145). The spanwise component (Fig. 10(b)) has
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FIGURE 9(A). Intermittency function I(r, z, z) of the vertical vorticity component

in the mixing layer.
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FIGURE 9(B). Intermittency function I(r, z, z) of the vertical vorticity component

in the mixing layer, viewed from 'above'. Shown are iso-lines of I(r, z, z) ranging
from I = 0 to I = 125.
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FIGURE 10(A). Intermittency function for the streamwise (ul) velocity component

in the mixing layer (top view, parallel to r-axis). Shown are iso-lines of I(r, z, z)
ranging from I = 0 to I = 145.
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FIGURE 10(B). Intermittency function for the spanwise (u2) velocity component

in the mixing layer (top view, parallel to r-axis). Shown are iso-lines of I(r, z, z)
ranging from I = 0 to I = 90.

activity also localized in the vortex core, but in a wider zone, and it is less intermit-

tent (I(r, z, z) reaches at most 90). On the contrary, the vertical velocity component

(Fig. 10 (c)) is much more space-filling and considerably less intermittent (I(r, z, z)
maximum is 40).

Now we consider two spanwise cuts (constant x) of the intermittency function.
The first cut is located in the braid region, while the second corresponds to the

vortex core. These cuts (not shown here) were obtained for each velocity component•
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Z

FIGURE 10(c). Intermittency function for the vertical (us) velocity component

in the mixing layer (top view, parallel to r-axis). Shown are iso-lines of I(r, z, z)

ranging from I = 0 to [ = 40.

As a first conclusion, we state that the intermittency in the braid regions is very

low (between 0 and 5), this at every scale. Second, in the vortex core we observe

different features comparing the three velocity components:

(a) For the streamwise component, only one relevant small-sca/e structure is visi-

ble, for which I(r, z, z) : 85. Its fluctuations exist on a band of scales corresponding

to r _ 16 to the smallest resolved scales (r = 4).

(b) For the spanwise component, the small-scale activity is more distributed,

occurring only at the smallest scales (around r ,,_ 4. The maximum intermittency

there is 40, and is encountered at three different locations, possibly corresponding

to some ribs (Moser & Rogers 1990) engulfed into the vortex core.

(c) For the vertical velocity component, we observe a very different behavior:
The intermittency is weak (maximum value of I is 9), and is encountered in two

distinct bands of scales (around r ,_ 16 and r ,,_ 4), separated by a clear gap with no

activity there. Within the active bands, we can distinguish several features which

we interpret tentatively as the cups region (Moser & Rogers 1990), or again ribs

engulfed into the vortex core.
Similar conclusions concerning the small scale activity concentrated in the core

region and the difference between different velocity components were reached with

a technique called 'peak-valley counting' utilized by Zohar et al. (1990). This

technique provides information about the geometry of scales but not about their

energy content.
From the computation of the wavelet coefficients, we can also plot local spectra,

defined as [ i(r, zo,zo) 12 the energy or enstrophy at some location (z0,z0) as a

function of scale, plotted in terms of inverse scale r -1. As an example, we study

the local spectra of the vertical vorticity at three different points: The two points

where vorticity is largest (these are actually located in the vortex core), and a point
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FIGURE 11. Comparison of global and local spectra of vertical vorticity in the
mixing layer. The squares correspond to the spectral mean over all locations. The

crosses correspond to the local spectrum at the location of very small vorticity in
the braid region. The circles correspond to the local spectrum at the location of

maximum vorticity (in the core region), and the triangles correspond to the second

maximum of vorticity, also located in the core region.

(located in the braid region) where vorticity is very low. We also compute the

average enstrophy (average over all points (z, z) for each scale). The results are
plotted in Fig. 11.

For scales smaller than r=20, we observe a rapid departure from average, a sign

of the strong interndttency. At the scale r = 4, the difference is 1.4 decades in

enstrophy. Extrapolating the spectra using the observed slopes, we conjecture that

the larger the Reynolds number, the larger the degree of intermittency.

As a next step, we analyze the distribution of local Reynolds number, which is

defined combining all three velocity components. In Fig. 12 we show a iso-Reynolds
number surface corresponding to Re = 25. This can be interpreted as a surface of

iso-level of nonlinearity in the flow. It is not fiat and it presents a scale extension over

4 octaves (r = 64 to 4). Its peaks, corresponding to the most unstable regions, are

located in the vortex core, clearly confirming our previous conclusions concerning
the small-scale activity there.

In the vortex core, relatively high local Reynolds numbers are attained at much

smaller scales in the braid region (we notice that Re -- 25 even reaches the smallest

computed scale r = 4). Due to the limited resolution of the data, we have not

obtained the manifolds for Reynolds numbers smaller than 5. Therefore, we have

not attained the dissipative manifold Re : 1, but it is safe to argue that the

dissipative manifold would also fluctuate, meaning that the Kolmogorov scale varies

with location, being much smaller in the vortex core than in the braid regions.
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FIGURE 12. Local Reynolds number behavior in the mixing layer. Shown is a

surface corresponding to Re(r, z, z) = 25. The peaks are located in the vortex core.

6. Conclusions

In conclusion, the wavelet transform allows us to:

(1) Localize the dynamically active regions of a turbulent flow.

(2) In varying the wavelet angle 0, we are able to separate the streamwise contri-
butions (for 0 = 0) from the spanwise contributions (for 0 = _r/2) of the flow field

we analyze.
(3) In comparing the isotropy of the flow at different scales, we can test the return

to isotropy in the small scales.
In order to answer the three questions we have asked in the introduction, we have

defined three new diagnostic tools:

(1) A measure of intermittency, defined as the ratio of local energy to average

energy at a given scale,

(2) A local spectrum giving the energy or enstrophy distribution versus scale in
the vicinity of a given point, which can then be compared to the total spectrum,

(3) A local Reynolds number, defined in terms of the local velocity contribution,
the scale of the transform, and molecular viscosity. This gives a representation of the

local non-linearity of the flow viewed in both space and scale. The surface Re = 1

corresponds to the 'dissipative manifold' and its topology (flat or not) indicates how

much the Kolmogorov scale varies in space.

For all flows considered we have found that:

(1) In the large scales, the energy density is homogeneous,
(2) In the small scales, the energy density is very inhomogeneous, and there is a

strong intermittency associated to some coherent structures, namely the "bursts"
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for the channel flow and the vortex core for the l_xing layer,

(3) The topology of iso-Reynolds number surfaces is not flat and their peaks,

corresponding to the most unstable regions, are encountered in the vortex core of

the mixing layer, where the Kolmogorov scale is, therefore, much smaller than in
the rest of the flow.

Finally, as future development, the continuous wavelet transform in two dimen-

sions (as opposed to the one-dimensional case which has received much attention)
needs to be tested more in detail in some simple test cases. One needs to better

understand the information given by the phase, define better techniques to average

over angles, and compare results using different wavelets (orthogonal or not).
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